Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Comandos eletricos 2005, Notas de estudo de Engenharia Elétrica

Comandos eletricos 2005

Tipologia: Notas de estudo

2012

Compartilhado em 15/12/2012

alex-gomes-ag-3
alex-gomes-ag-3 🇧🇷

4.6

(115)

302 documentos

Pré-visualização parcial do texto

Baixe Comandos eletricos 2005 e outras Notas de estudo em PDF para Engenharia Elétrica, somente na Docsity! COMANDOS ELÉTRICOS CENTRO DE FORMAÇÃO PROFISSIONAL PEDRO MARTINS GUERRA Itabira 2005 Presidente da FIEMG Robson Braga de Andrade Gestor do SENAI Petrônio Machado Zica Diretor Regional do SENAI e Superintendente de Conhecimento e Tecnologia Alexandre Magno Leão dos Santos Gerente de Educação e Tecnologia Edmar Fernando de Alcântara Unidade Operacional Centro de Formação Profissional Nansen Araújo Revisão Equipe Técnica – Centro de Formação Profissional Pedro Martins Guerra Itabira – MG / 2005 Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 5/57 Mantenedor Mecânico - MINA 1. CORRENTE ALTERNADA MONOFÁSICA E TRIFÁSICA 1.1 CORRENTE ALTERNADA E TENSÃO MONOFÁSICA A tensão e a corrente produzidas por fontes geradoras podem ser contínuas ou alternadas. A corrente é contínua quando circula no circuito num único sentido. Entretanto, se a corrente sai ora por um, ora por outro borne, na fonte geradora, circula ora num, ora noutro sentido, no circuito, é corrente alternada. A fonte geradora de corrente alternada chama-se alternador. Se representássemos num gráfico os valores da corrente no eixo vertical e o tempo horizontal, obteríamos uma curva, como a da figura abaixo, para representação da variação da corrente alternada. Figura 1.1 – Representação da variação da corrente alternada. Vemos aí que, no instante inicial, a corrente tem valor nulo, crescendo até um valor máximo, caindo novamente a zero; neste instante, a corrente muda de sentido, porém, seus valores são os mesmos da primeira parte. O mesmo acontece com a tensão. A essa variação completa, em ambos os sentidos, sofrida pela corrente alternada, dá-se o nome de ciclo. O número de ciclos descritos pela corrente alternada, na unidade de tempo, chama-se freqüência. Sua unidade é o ciclo/segundo ou Hertz. É medida em instrumentos chamados freqüencímetros. As freqüências mais comumente usadas são 50 c/s e 60 c/s. Durante um ciclo, a corrente e a tensão tomam valores diferentes de instante a instante; esses são ditos valores momentâneos ou instantâneos, dentre os quais cumpre destacar o valor máximo (Imax). Entretanto, na prática, não é o valor máximo o empregado e sim o valor eficaz. Por exemplo, um motor absorve uma corrente de 5 A que é o valor eficaz. Define- se como valor eficaz de uma corrente alternada ao valor de uma corrente contínua que produzisse a mesma quantidade de calor numa mesma resistência (Lei de Joule). Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 6/57 Mantenedor Mecânico - MINA Esse valor é expresso por: Imax lef = _________ = 0,707 Imax √2 Por analogia, para a tensão, temos: Emax Eef = ________ = 0,707 Emax √2 Tanto o voltímetro como o amperímetro para corrente alternada, medem valores eficazes. 1.2 RESISTÊNCIA EM CORRENTE ALTERNADA Os resistores atuam sobre a corrente alternada praticamente do mesmo modo que sobre a contínua. A resistência que um resistor oferece à passagem da corrente elétrica, contínua ou alternada, é dada por: L R = ρ ___ S Se enrolarmos um condutor sobre um núcleo de ferro, constituímos um indutor ou reator. Para a corrente contínua, a resistência a considerar é dada unicamente pela resistência (ohmica) do enrolamento do reator. Entretanto, para a corrente alternada, deve-se considerar ainda outra resistência. É chamada reatância indutiva. XL = 2πfL Onde: XL = reatância indutiva, em Q f = freqüência da corrente alternada, em ciclos/segundo L = coeficiente de auto-indução; é uma grandeza que caracteriza cada reator em particular e é dado em henrys. Duas superfícies condutoras separadas por um isolante (dielétrico) constituem um capacitor. O capacitor não permite a passagem da corrente contínua, aparentando porém, permitir a alternada, e oferecendo à passagem desta uma resistência, à qual damos o nome de reatância capacitiva. A reatância capacitiva de um capacitor é dada por: 1 XC = _________ Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 7/57 Mantenedor Mecânico - MINA 2πfC Onde: XC = reatância capacitiva, em Ω f = freqüência da corrente alternada, em ciclos/segundo C = capacitância, em microfarads (µ F) A capacitância é uma grandeza que caracteriza cada capacitor; sua unidade na prática se usa um submúltiplo, o microfarad (µ F), que vale a milionésima parte de farad. 1F 1F 1µ F _________ = _____ 1.000.000 106 1.3 CORRENTE ALTERNADA: DEFASAGEM ENTRE CORRENTE E TENSÃO A corrente alternada e a tensão variam em ambos os sentidos durante um determinado intervalo de tempo, descrevendo um ciclo. Representando graficamente esta variação, obtemos uma onda para a corrente e outra para a tensão. Os alternadores, fontes geradoras de CA, são máquinas rotativas; por analogia a elas, o ciclo é dividido em 360º, representando uma circunferência retificadora. Os valores instantâneos da corrente, ou da tensão, durante um ciclo, podem ser representados pelas projeções do raio de um círculo, em suas diversas posições. Figura 1.2 – Representação dos valores instantâneos de corrente e tensão durante um ciclo. Desse modo, podemos representar a tensão e a corrente alternada por segmentos de reta proporcionais aos seus valores instantâneos. Esta representação é denominada geométrica. É muito usada pela facilidade que apresenta. Os valores máximos da corrente e da tensão durante um ciclo podem ou não coincidir. Mas quando coincidem diz-se que ambas estão em fase. Se não coincidem, estão defasadas. A diferença em graus, entre os instantes em que ocorrem os valores máximos da corrente e da tensão chama-se ângulo de fase ( ϕ ). Quando a corrente e a tensão estão defasadas, pode ocorrer que a 0º 0º Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 10/57 Mantenedor Mecânico - MINA Figura 1.6 E IR = ____ , em fase com E R Pelo indutor, temos: Figura 1.7 E IL = ____ , atrasada de 90° em relação a E. XL Pela linha circula uma corrente I, defasada de um ângulo ϕ em relação a E, cujo valor é a soma geométrica entre IR e IL: I = √ I2R + I2L Se ligarmos mais uma derivação e nela colocarmos um capacitor, a corrente que passa por ele, é E IC = ___ , que está adiantada de 90º em relação à tensão. XC Deste modo, teremos: Figura 1.8 - E = √ I2R + (IL - IC)2 Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 11/57 Mantenedor Mecânico - MINA E A impedância será: Z = ___ I IR Figura 1.9 – O fator de potência será cós ϕ = ___ . I Na prática, costuma-se ligar capacitores em paralelos aos circuitos (que na maioria das vezes são de comportamento indutivo) com o fim de se ter um fator de potência próximo à unidade (ϕ = 0º). Isto equivale tornar o circuito com comportamento próximo ao resistivo ou ohmico. Tal medida é interessante, uma vez que o componente, defasado de 90º em relação à tensão, diminui, permitindo o melhor aproveitamento das linhas de transmissão. Figura 1.10 1.6 CORRENTE ALTERNADA E TENSÃO TRIFÁSICA Quando uma linha é formada por três condutores com as tensões entre um e outro iguais, porém defasadas de 120º, temos uma rede trifásica. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 12/57 Mantenedor Mecânico - MINA Figura 1.11 - Representação da corrente alternada ou tensão trifásica. Quando ligamos a uma linha trifásica três fontes receptoras, ou três elementos de uma fonte receptora, temos um circuito trifásico. Conforme a maneira de efetuarmos as ligações temos um circuito estrela ou triângulo (Y ou ∆). 1.7 CIRCUITO ESTRELA OU Y As três extremidades dos finais dos elementos são ligadas entre si, e as três iniciais à linha. Como se pode ver na figura seguinte, a corrente que passa pela linha, é a mesma que passa pelos elementos, isto é, a corrente de linhas é igual a corrente de fase. Figura 1.12 – I = ILinha = IFase. O ponto comum aos três elementos chama-se neutro. Se deste ponto se tira um condutor, temos o condutor neutro, que em geral é ligado à terra. A tensão aplicada a cada elemento (entre condutores de fase e neutro) é chamada tensão de fase e a entre dois condutores de fase, tensão de linha. A relação entre elas é: E = ELinha = EFase x √3 1.8 CIRCUITO TRIÂNGULO OU ∆ A extremidade final de um elemento é ligada à inicial do outro, de modo que os três fiquem dispostos eletricamente, segundo os lados de um triângulo eqüilátero. Os vértices são ligados à linha. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 15/57 Mantenedor Mecânico - MINA e no triângulo: I EF = E e IF = ____ √3 resulta: W = E x I x cos ϕ √3 tanto para circuito estrela como para o circuito triângulo, dado em função dos elementos de linha. A potência aparente num sistema trifásico será portanto: (VA) = E x I x √3 Na prática, os alternadores e transformadores são construídos visando-se as potências aparentes de carga; é comum, por exemplo, encontramos transformadores para trabalharem com 100 kVA. Os fabricantes fornecem, sempre, além de outras características, o fator de potência, a fim de podermos determinar a potência vatada. Já os motores são especificados para uma dada potência ativa em watts ou HP. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 16/57 Mantenedor Mecânico - MINA 2. INTRODUÇÃO A COMPONENTES DE COMANDOS 2.1 CONTATOR é um dispositivo de manobra com atração magnética destinado à interrupção de correntes nominais ou de sobrecargas pré-definidas. As diferenças básicas entre o contator e o seccionador sob carga são: - o contator permite comando automático, além do comando manual local; - o contator é adequado para uma elevada freqüência de manobras. Figura 2.1 – Modelos de contatores 2.1.1 PRINCÍPIO DE FUNCIONAMENTO Seu princípio de funcionamento baseia-se na força magnética que tem origem na energização de uma bobina (bobina eletromagnética) e na força mecânica proveniente do conjunto de molas de que se compõe (mola interruptora). Quando a bobina é energizada, a força eletromecânica desta sobrepõe-se à força mecânica das molas, obrigando os contatos móveis a se fecharem sobre os contatos fixos. A velocidade de fechamento tem seu valor dado pela resultante da força magnética proveniente da bobina e da força mecânica das molas de separação que atuam em sentido contrário. São assim as molas, as únicas responsáveis pela velocidade de abertura do contator - função que ocorre quando a bobina magnética não estiver sendo alimentada, ou quando o valor da força magnética for inferior à força das molas. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 17/57 Mantenedor Mecânico - MINA Figura 2.2 Os contatos principais (contato móvel e contato fixo) permitem a conexão da fonte à carga. Portanto são contatos que definem o estado operacional da carga. Estes contatos são projetados para o comando de circuitos sob condições nominais de serviço. Os contatos 5 e 5’ (NA) e 6 e 6’ (NF) são chamados de “contatos auxiliares”, devido às funções que exercem no circuito de comando da bobina do contator. Com a energização da bobina, os contatos principais são fechados, os contatos auxiliares normalmente abertos (NA) também são fechados e os contatos auxiliares normalmente fechados (NF), são abertos. Geralmente o comando para ligação, ou seja, para energização da bobina é fornecido na forma de um pulso, isto é, não permanente. Para manter-se a bobina energizada é necessária a utilização de um contato auxiliar normalmente aberto em paralelo com o botão de comando “liga”. Observe a seqüência de operações: 1 – Contato 2 – Contato fixo 2a – Terminal de ligação 3 – Mola interruptora 4a – Núcleo do magneto (móvel) 5 – Bobina eletromagnética 6 – Núcleo do magneto (fixo) 5 5’ 6’ 6 A B Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 20/57 Mantenedor Mecânico - MINA − tensão de operação de 0,85 a 1,10 da tensão nominal prevista para o contator. 2.1.4 NORMAS A normalização na identificação dos contatores e demais dispositivos de manobra de baixa tensão é o meio utilizado para tornar mais uniforme a execução de projetos de comandos e facilitar a localização e função destes elementos na instalação. Contatos Principais São numerados de acordo com a norma DIN EM 50011. Os terminais de entrada 1, 3 e 5 voltam-se para a rede (fonte) enquanto os terminais de saída 2, 4 e 6 voltam-se para o motor (carga), sendo os terminais de alimentação da bobina identificados por “A1” e “A2” ou ainda “a” e “b”. Figura 2.4 - Identificação dos contatos de um contator e um relé de sobrecarga Contatos Auxiliares São identificados por números de dois dígitos de acordo com a norma DIN EM 50011, respeitadas as determinações de seqüenciamento, função e disposição mecânica. Sequenciamento: o primeiro dígito integrante da identificação de um contato auxiliar indica a posição ocupada pelo mesmo a partir da esquerda. Função: a função do contato é indicada pelo segundo dígito, conforme o convencionado pela norma como segue: • • • 1 3 5 2 4 6 A1 A2 Contator • 1 3 5 2 4 6 12 14 11 Relé Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 21/57 Mantenedor Mecânico - MINA • • Contato Normalmente Fechado (NF) (abridor) Contato Normalmente Aberto (NA) (fechador) Contato Normalmente Fechado Atrasado na Abertura (abridor atrasado) Contato Normalmente Aberto Adiantado no Fechamento (fechador adiantado) Figura 2.5 – Simbologia da condição do contato Contatos Auxiliares Os casos da folha representam as funções usuais em contatores sendo o número superior o de entrada e o inferior o de saída. Veja o exemplo de um contator auxiliar. Figura 2.6 - Especificação do contator a terminação “E” Na especificação de um contator, os dígitos numéricos de identificação têm os seguintes significados: 1º dígito = número de contatores fechadores 2º dígito = número de contatores abridores 3º dígito = número de contatos comutadores • • • 1 3 1 4 2 3 3 3 4 1 2 3 3 4 4 2 Número de identifi- cação da função Número de identifi- cação da seqüência a b Número de identificação Número de identificação 3 1 3 Fechadores 1 Abridor 1 2 3 4 Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 22/57 Mantenedor Mecânico - MINA 44 32 22 14 Não existindo contatos ou abridores, deve ser escrito, na posição correspondente, o algarismo “0”. Independente do tipo de construção do equipamento, as identificações de terminais e símbolos para contatores auxiliares vêm indicadas na DIN 46199. Os contatores auxiliares duplos e relés de ligação têm normalizado também o posicionamento físico dos contatos. Disposição mecânica: além da codificação normal de seqüenciamento e função dos contatos auxiliares, existe ainda uma nomenclatura dependente da disposição mecânica destes, a saber: - Terminação “E”: esta terminação, destinada à disposição preferencial, dita que em seqüência de dois contatos, sendo 1NA + 1NF, tem-se sempre em primeiro o contato normalmente aberto (NA), seguido normalmente fechado (NF). Já que nas seqüências com número de contatos superior a dois tem um contato NA iniciando a seqüência, seguido de todos os NF, e após estes os NA restantes. Assim, respeitadas as condições citadas acrescente-se à especificação do contator a terminação “E”. Figura 2.7 - Exemplo de um contator auxiliar CAW 04.22E (Fabricação WEG) - Terminação “Z”: existem situações em que as características construtivas do contator não permitem a disposição preferencial “E”. Nestes casos opta-se pela variante “Z”, que dita para qualquer seqüência, que tenha-se em primeiro lugar todos os contatos NA, seguidos de todos NF. Figura 2.8 - Exemplo de um contator auxiliar CAW 04.22Z (Fabricação WEG) Figura 2.9 - Contatos de um relé de sobrecarga • 95 96 98 • 95 97 98 96 13 43 21 31 34 22 44 14 13 21 31 43 • • A1 A2 • • A1 A2 Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 25/57 Mantenedor Mecânico - MINA O elo fusível é feito de cobre em forma de lâminas vazadas em determinados pontos para reduzir a seção condutora. O elo fusível pode ainda ser fabricado em prata. Fusíveis DIAZED Os fusíveis DIAZED podem ser de ação rápida ou retardada. Os de ação rápida são usados em circuitos resistivos, ou seja, sem picos de corrente. Os de ação retardada são usados em circuitos com motores e capacitores, sujeitos a picos de corrente. Esses fusíveis são construídos para valores de, no máximo, 200 A. A capacidade de ruptura é de 70kA com uma tensão de 500V. Construção dos Fusíveis DIAZED O fusível DIAZED (ou D) é composto por base (aberta ou protegida), tampa, fusível, parafuso de ajuste e anel. A base é feita de porcelana dentro da qual está um elemento metálico roscado internamente e ligado externamente a um dos bornes. O outro borne está isolado do primeiro e ligado ao parafuso de ajuste. Figura 2.13 – A = Borne ligado ao corpo roscado B = Borne ligado ao parafuso de ajuste A tampa, geralmente de porcelana, fixa o fusível à base e não é inutilizada com a queima do fusível. Ela permite inspeção visual do indicador do fusível e sua substituição mesmo sob tensão. Figura 2.14 – Tampa do fusível DIAZED Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 26/57 Mantenedor Mecânico - MINA O parafuso de ajuste tem a função de impedir o uso de fusíveis de capacidade superior à desejada para o circuito. A montagem do parafuso é feita por meio de uma chave especial. Figura 2.15 – Parafuso de ajuste O anel é um elemento de porcelana com rosca interna, cuja função é proteger a rosca metálica da base aberta, pois evita a possibilidade de contatos acidentais na troca do fusível. Figura 2.16 – Anel O fusível é um dispositivo de porcelana em cujas extremidades é fixado um fio de cobre puro ou recoberto por uma camada de zinco. Ele fica imerso em areia especial, cuja função é extinguir o arco voltaico e evitar o perigo de explosão quando da queima do fusível. Figura 2.17 – Visão interna do fusível O fusível possui um indicador, visível através da tampa, cuja corrente nominal é identificado por meio de cores e que se desprende em caso de queima. Veja na tabela a seguir, algumas cores e suas correntes nominais correspondentes. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 27/57 Mantenedor Mecânico - MINA Tabela 2.1 O elo indicador de queima é constituído de um fio muito fino ligado em paralelo com o elo fusível. Em caso de queima do elo fusível, o indicador de queima também se funde e provoca o desprendimento da espoleta. Características e Instalação As principais características dos fusíveis DIAZED e NH são: Corrente nominal: corrente máxima que o fusível suporta continuamente sem interromper o funcionamento do circuito. Esse valor é marcado no corpo de porcelana do fusível. Corrente de curto-circuito: corrente máxima que deve circular no circuito e que deve ser interrompida instantaneamente. Capacidade de ruptura (kA): valor de corrente que o fusível é capaz de interromper com segurança. Não depende da tensão nominal da instalação. Tensão nominal: tensão para a qual o fusível foi construído. Os fusíveis normais para baixa tensão são indicados para tensões de serviço de até 500V em CA e 600V em CC. Resistência elétrica (ou resistência ôhmica): grandeza elétrica que depende do material e da pressão exercida. A resistência de contato entre a base e o fusível é a responsável por eventuais aquecimentos que podem provocar a queima do fusível. Curva de relação tempo de fusão x corrente: curvas que indicam o tempo que o fusível leva para desligar o circuito. Elas são variáveis de acordo com o tempo, a corrente, o tipo de fusível e são fornecidas pelo fabricante. Dentro dessas curvas, quanto maior for a corrente circulante, menor será o tempo em que o fusível terá que desligar. Veja a curva típica abaixo: Cor Intensidade de corrente (A) Rosa 2 Marrom 4 Verde 6 Vermelho 10 Cinza 16 Azul 20 Amarelo 25 Preto 35 Branco 50 Laranja 63 Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 30/57 Mantenedor Mecânico - MINA Figura 2.19 - Esquema simplificado de um relé de mínima tensão O relé de máxima corrente é regulado para proteger um circuito contra excesso de corrente. Esse tipo de relé abre, indiretamente, o circuito principal, assim que a corrente atingir o limite da regulagem. A corrente elevada, ao circular pela bobina, faz com que o núcleo do relé atraia o fecho. Isto provoca a abertura do contato abridor e interrompe o circuito de comando. Figura 2.20 – Relé de máxima corrente A regulagem desse tipo de relé é feita aproximando-se ou afastando-se o fecho do núcleo. Quando o fecho é afastado, é necessário uma corrente mais elevada para acionar o relé. TRAVA BOBINA DE MÍNIMA TENSÃO NÚCLEO MÓVEL CONTATOS MOLA DE DISPARO Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 31/57 Mantenedor Mecânico - MINA Figura 2.21 – Esquema simplificado de um relé de máxima corrente Os relés térmicos, como dispositivos de proteção, controle ou comando do circuito elétrico, atua por efeito térmico provocado pela corrente elétrica. O elemento básico dos relés térmicos é o bimetal. O bimetal é um conjunto formado por duas lâminas de metais diferentes (normalmente ferro e níquel), sobrepostas e soldadas. Esses dois metais, de coeficientes de dilatação diferentes, formam um par metálico. Por causa da diferença de coeficiente de dilatação, se o par metálico for submetido a uma temperatura elevada, um dos metais do par vai dilatar mais que o outro. Por estarem fortemente unidos, o metal de menor coeficiente de dilatação provoca o encurvamento do conjunto para o seu lado, afastando o conjunto de um ponto determinado. Figura 2.22 – Representação esquemática da atuação dos relés térmicos TRAVA BOBINA DE CORRENTE CONTATOS MOLA DE DISPARO ELEMENTO AQUECEDOR CONTATOS BIMETAL Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 32/57 Mantenedor Mecânico - MINA Esse movimento é usado para disparar um gatilho ou abrir um circuito, por exemplo. Portanto, essa característica do bimetal permite que o relé exerça o controle de sobrecarga para proteção dos motores. Os relés térmicos para proteção de sobrecarga são: - diretos; - indiretos; - com retenção. Os relés térmicos diretos são aquecidos pela passagem da corrente de carga pelo bimetal. Havendo sobrecarga, o relé desarma o disjuntor. Embora a ação bimetal seja lenta, o desligamento dos contatos é brusco à ação do gatilho. Essa abertura rápida impede a danificação ou soldagem dos contatos. Figura 2.23 - Representação esquemática de um relé térmico direto armado Figura 2.24 - Representação esquemática de um relé térmico direto desligado por sobrecarga ARMADO BIMETAL CONTATOS R GATILHO R DESLIGADO Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 35/57 Mantenedor Mecânico - MINA Sinalização é a forma visual ou sonora de chamar a atenção do operador para uma situação determinada em um circuito, máquina ou conjunto de máquinas. Ela é realizada por meio de buzinas e campainhas ou por sinalizadores luminosos com cores determinadas por normas. Sinalização Luminosa A sinalização luminosa é a mais usada por ser de mais rápida visualização. Figura 2.29 – Sinalização luminosa A tabela a seguir mostra o significado das cores de sinalização de acordo com as normas VDE. Cor Condição de Operação Exemplo de Aplicação Vermelho Condição anormal Indicação de que a máquina está paralisada por atuação de um dispositivo de proteção. Aviso para a paralisação da máquina devido a sobrecarga, por exemplo. Amarelo Atenção ou cuidado O valor de uma grandeza (corrente, temperatura) aproxima-se de seu valor limite. Verde Máquina pronta para operar Partida normal: todos os dispositivos auxiliares funcionam e estão prontos para operar. A pressão hidráulica ou a tensão estão nos valores especificados. O ciclo de operação está concluído e a máquina pronta para operar novamente. Branco (incolor) Circuitos sob tensão em operação normal Chave principal na posição LIGA. Escolha da velocidade ou do sentido de rotação. Acionamentos individuais e dispositivos auxiliares estão operando. Máquina em movimento. Azul Todas as funções para as quais não se aplicam as cores acima. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 36/57 Mantenedor Mecânico - MINA Tabela 2.2 A sinalização intermitente é usada para indicar situações que exigem atenção mais urgente. A lente do sinalizador deve propiciar bom brilho e, quando a lâmpada está apagada, apresentar-se completamente opaca em relação à luz ambiente. Sinalização Sonora A sinalização sonora pode ser feita por meio de buzinas ou campainhas. As buzinas são usadas para indicar o início de funcionamento de uma máquina ou para ficar à disposição do operador, quando seu uso for necessário. Elas são usadas, por exemplo, na sinalização de pontes rolantes. Figura 2.30 – Sinalização sonora O som deve estar entre 1000 e 3000 Hz. Deve conter harmônicos que o tornarão distinto do ruído local. As campainhas são usadas para indicar anomalias em máquinas. Assim, se um motor com sobrecarga não puder parar de imediato, o alarme chamará a atenção do operador para as providências necessárias. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 37/57 Mantenedor Mecânico - MINA Instalação de Sinalizadores Na instalação de sinalizadores para indicar a abertura ou o fechamento de contator, é importante verificar se a tensão produzida por auto-indução não provocará a queima da lâmpada. Nesse caso, a lâmpada deverá ser instalada através de um contato auxiliar, evitando-se a elevada tensão produzida na bobina do contator. Figura 2.31 - Circuito de sinalização Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 40/57 Mantenedor Mecânico - MINA Devido a tais características, os sensores capacitivos podem ser utilizados para detectar certos materiais através de outros, como, por exemplo, água dentro de um tubo de PVC. 3.3 CONFIGURAÇÃO ELÉTRICA DE ALIMENTAÇÃO E SAÍDAS DOS SENSORES Os sensores podem ser alimentados em CA ou CC. Podem ser interligados em série ou em paralelo. Os sensores com alimentação CC são classificados quanto ao tipo de saída, ou seja: − chave PNP; − chave NPN; − chave NPN e PNP. Na saída tipo chave PNP, existe um transistor PNP, e a carga é ligada ao pólo negativo. Figura 3.3 – Chave PNP Na saída tipo chave NPN, existe um transistor NPN, e a carga é ligada ao pólo positivo. Figura 3.4 – Chave NPN + _ Saída Tipo P Carga + _ Carga Saída Tipo Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 41/57 Mantenedor Mecânico - MINA Na saída tipo chave NPN e PNP, existem dois transistores, um NPN e um PNP. Assim, uma saída é positiva e a outra negativa. Os sensores de proximidade com alimentação CA, com saída a dois fios, devem ser ligados em série com a carga, como uma chave fim de curso mecânica, e sua alimentação se dá através da carga. Podem ser de dois tipos: Chave NF: nesse tipo de chave, a saída permanece em alta impedância, e a carga fica ligada. Ao ser atuada, passa para alta impedância, e a carga se desliga. Figura 3.5 – Chave NF Chave NA: nesse tipo de chave, a saída permanece em baixa impedância, a carga fica desligada. Quando é atuada, passa para baixa impedância e liga a carga. Figura 3.6 – Chave NA Para a utilização dessas chaves, aconselha-se o emprego de fusível de ação rápida.                    1ok A d!1234 $ P: B.(b&(6)3E<p . : 7* 8 q* *Rr :<!B +: - 6EE - B./ *  $s9 6EE - .G J utv 23T  8 w ./x$ y9 8 ) x :B%.(uK(.G :E.( (1) (NF) Tipo ~ ~ (1) (NA) Tipo ~ ~ Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 42/57 Mantenedor Mecânico - MINA 6)2$3$ 8 N*Ckz@.G P B.(< !5 7+ {<k$7>3&()*) .(e!B * q BjRrEnH *; q* *Rr :C `| }:9 8 ) ~&+$* 8 QK)./ E.(V sH 8 3$ NX q3T > #!5$23$ €234 8 8  .( $~B, $CBv 8 E&+%   } .  - X :6'E -B.G J Qq .G }23$ 8 8 q.( $ &()* aH = ~+ *+R@ C Os sensores com alimentação CA, com saída de três ou quatro fios, apresentam funcionamento e aplicações semelhantes ao modelo de dois fios. Porém, nesses tipos de sensores a alimentação é feita independentemente da carga. Assim, quando a chave está aberta, a corrente pela carga é nula e, quando a chave está fechada, a tensão sobre a carga é praticamente a tensão de alimentação. Abaixo temos três tipos de configuração dos sensores CA de três e quatro fios. Sensor CA com contato NA Sensor CA com contato NF Figura 3.7 - Sensor CA com saídas complementares (contatos NA e NF) 3.4 MÉTODO DE LIGAÇÃO DOS SENSORES A ligação tanto dos sensores CC como dos sensores CA pode ser de dois tipos: Ligação Série dos Sensores CC: quando o sensor CC é acionado, ocorre uma pequena queda de tensão. Assim, a tensão na carga será reduzida de um valor dependente do número de sensores ligados em série. Em seguida encontra-se a ligação em série de sensores NPN e PNP. ~ + - ~ Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 45/57 Mantenedor Mecânico - MINA 4. INTRODUÇÃO A MÁQUINAS ELÉTRICAS Os seguintes fenômenos são facilmente observáveis: a) dois ímãs permanentes tendem a se alinhar com os pólos opostos se defrontando; b) dois reatores de formas convenientes (eletroímãs), quando excitados, tendem a alinhar-se de modo que os eixos longitudinais tomem a direção do campo, com os pólos opostos se defrontando. Nestes dois sistemas, notaremos que toda vez que houver um desalinhamento dos campos, desenvolver-se-á uma força que tenderá a restabelecer o alinhamento. Lembremos que o eletroímã produz os mesmos efeitos magnéticos de um ímã permanente, apresentando igualmente um pólo norte e um pólo sul. Quando se processam tais realinhamentos de elementos excitados, o sistema produz um trabalho mecânico e a energia necessária é fornecida pela fonte elétrica que mantém o campo magnético. Se impusermos o desalinhamento aos elementos excitados, então estaremos fornecendo trabalho mecânico ao sistema, que devolve a energia correspondente em forma de energia elétrica. Em ambos os casos, o dispositivo se torna um transdutor, isto é, converte uma forma de energia em outra. Construindo-se convenientemente este transdutor, temos então as máquinas elétricas. Máquinas elétricas são equipamentos rotativos que convertem a energia em mecânica (motores) ou a energia mecânica em energia elétrica (geradores). 4.1 CLASSIFICAÇÃO Tomando como critério de classificação o princípio de funcionamento, as máquinas elétricas se classificam em máquinas de coletor, máquinas assíncronas (motores de indução) e máquinas síncronas. Observe o esquema seguinte: Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 46/57 Mantenedor Mecânico - MINA No entanto, veremos apenas máquinas de corrente contínua, motor de indução trifásico e máquinas síncronas trifásicas. Nas máquinas elétricas podemos distinguir duas partes principais: o estator (parte fixa) e o rotor (a parte girante). Nos motores de indução e síncrono trifásicos, o estator tem a mesma forma construtiva. Os enrolamentos do estator são alojados em sulcos existentes na periferia do núcleo de ferro laminado e é alimentado por uma fonte trifásica, que forma o campo girante. Entretanto, os rotores são bem diferentes. No motor de indução, temos dois tipos de rotor: − rotor em curto-circuito ou gaiola de esquilo (ou simplesmente gaiola); − rotor bobinado. Em ambos, os núcleos magnéticos são laminados. No motor síncrono, o rotor é constituído por bobinas enrolados convenientemente nos núcleos magnéticos (denominados de pólos) e alimentados por uma fonte de corrente contínua. MÁQUINAS DE COLETOR Geradores (dínamos) Motores de Corrente Contínua Motor Série Motores de Repulsão Máquinas de Corrente Alternada Trifásicas Monofásicas MÁQUINAS ASSÍNCRONAS (Motores de Indução) Motores Síncronos Geradores (alternadores) MÁQUINAS SÍNCRONAS Máquinas de Corrente Contínua Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 47/57 Mantenedor Mecânico - MINA Figura 4.1 - Máquina elementar que pode variar de acordo com as excitações impostas. 4.2 GERADOR DE CORRENTE CONTÍNUA No gerador de corrente contínua, o enrolamento do estator (também conhecido como enrolamento de campo) é excitado por uma fonte de corrente contínua e no eixo do rotor impõe-se um torque mecânico. Quando o enrolamento do rotor (o rotor é conhecido também como armadura ou induzido) corta as linhas de força f.e.m. é induzida nele, obedecendo a lei de Faraday. A f.e.m. induzida é alternada (senoidal), mas por meio de uma retificação mecânica (comutador) é transformada em corrente contínua. Campo Magnético estator rotor entreferro eixo entreferro Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 50/57 Mantenedor Mecânico - MINA Expressão 1  PE (kW) = PN (kW) η Expressão 2  PE (kW) = PN (cv)0,736 η Expressão 3  PE (kW) = PN (HP)0,746 η A corrente nominal ou corrente de plena carga de um motor IN, é a corrente consumida pelo motor quando ele fornece a potência nominal a uma carga. Para os motores de corrente alternada, as correntes podem ser determinadas pelas seguintes expressões: Expressão 4  IN = PN = PE , para motores monofásicos VN cos ϕη VN cos ϕ e Expressão 5  IN = PN = PE , para motores 3 VN cos ϕη 3 VN cos ϕ trifásicos. VN é a tensão nominal (de linha) e cos ϕ o fator de potência nominal. A corrente consumida por um motor, varia bastante com as circunstâncias. Na maioria dos motores, a corrente é muito alta na partida, caindo gradativamente (em alguns segundos) com o aumento da velocidade. Atingidas as condições de regime, isto é, motor com velocidade nominal, fornecendo a potência nominal a uma carga, ela atinge o seu valor nominal – aumentando, porém, se ocorrer alguma sobrecarga. Em princípio, nenhum motor deve ser instalado para fornecer uma potência superior à nominal. No entanto, sob determinadas condições, isso pode vir a ocorrer, acarretando um aumento de corrente e de temperatura, que dependendo da duração e da intensidade da sobrecarga, pode levar à redução da vida últil dos kVA comsumidos por HP com rotor bloqueado; evidentemente, o motor nunca funciona nessas condições (rotor bloqueado), porém, no instante da partida ele não está girando e, portanto, essa situação é válida até que ele comece a girar. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 51/57 Mantenedor Mecânico - MINA A tabela abaixo fornece a relação kVA/HP para as diversas letras-código, com base no seguinte exemplo: − um motor de indução trifásico possui 3 HP, 220 V, fator de potência 0,83, rendimento 78% e letra-código J. Pelas expressões 3 e 5, determinamos corrente nominal de 9A. Da tabela determina-se a relação kVA/HP, que fica na faixa de 7,10 a 7,99. Tomando-se o valor médio, 7,55, determinamos a corrente de partida de 59,6 A. Assim, a relação de correntes 6,62. Faixa de Potência Percentual até 1cv de 1 a 10 cv de 10 a 40 cv de 40 a 100 cv de 100 a 300 cv acima de 300cv 32 a 36% 54 a 59% 6 a 8% 0,5 a 1% 0,4 a 0,5% menos de 0,4% Tabela 4.1 - Utilização de motores de indução por faixa de potência. Princípio de Funcionamento Basicamente os motores de indução são compostos de uma parte fixa (estator) e uma parte rotativa (rotor). Campo Pulsante Consideremos um enrolamento distribuído no estator de um motor de indução monofásico. A corrente monofásica que percorre o enrolamento gera um campo magnético que acompanha a variação senoidal da corrente, formando sempre um par de pólos N-S, cuja posição depende o sentido da corrente. Diz-se que o campo é pulsante, isto é, o campo muda de polaridade, mantendo fixo o eixo de simetria. Campo Girante Se em vez de um motor monofásico, considerarmos um trifásico, as correntes trifásicas que percorrem os enrolamentos (fases) do estator vão gerar, em cada fase, campos pulsantes, defasados de um ângulo igual ao da defasagem entre as tensões aplicadas, cujos eixos de simetria são fixos no espaço, mas cuja resultante é um campo que gira num determinado sentido, denominado campo girante. Consideremos agora o estator de um motor de indução trifásico. As três fases (1), (2) e (3), alojadas nas ranhuras do estator, são deslocadas uma da outra de 120º, e ligadas, (em estrela ou em triângulo), a uma fonte de alimentação trifásica. Os enrolamentos iniciam em P1, P2 e P3 e terminam em F1, F2 e F3 respectivamente. As tensões aplicadas se acham defasadas de 120º graus elétricos, e nas três fases resultam correntes iguais, defasadas entre si de 120º graus elétricos, as Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 52/57 Mantenedor Mecânico - MINA quais geram campos magnéticos pulsantes, que se combinam dando um campo resultante de valor constante. Este campo gira com uma velocidade constante que depende da freqüência da fonte e o número de pólos para os quais o estator foi enrolado. A velocidade de rotação do campo é a velocidade síncrona, cuja expressão é n = 60 f p sendo n – velocidade em rpm; f – freqüência da rede e p – número de pares de pólos. O sentido de rotação do campo, que determina o sentido de rotação do motor, depende da seqüência das tensões e das ligações das três fases, que na prática poderá ser invertido, invertendo as ligações de duas fases quaisquer do estator com a linha de alimentação. Note-se que as três fases do estator podem atuar como o primário de um transformador trifásico quando se introduz um segundo grupo de enrolamentos (rotor), acoplados indutivamente com os enrolamentos do estator. O motor de indução trifásico é o motor de corrente alternada mais comum e de mais simples e robusta construção. Seu nome deriva do fato de que a corrente no rotor não provém diretamente de uma fonte de alimentação, mas é induzida nele pelo movimento relativo dos condutores do rotor e do campo girante produzido pelas correntes no estator. O motor de indução consiste de duas partes principais. A primeira é o estator, uma parte fixa que consiste de enrolamentos alojados nas ranhuras existentes na periferia interna de um núcleo de ferro laminado (carcaça). Os enrolamentos do estator são alimentados com tensão trifásica, que produz um campo magnético que gira com velocidade síncrona. A segunda é o rotor que, independente do tipo, tem o núcleo magnético de ferro laminado. O rotor pode ser construído em dois tipos: a) rotor bobinado Consta de um núcleo em tambor, provido de ranhuras onde são alojados enrolamentos semelhantes ao do estator, e produzindo o mesmo número de pólos. No motor trifásico, estes enrolamentos são geralmente ligados em estrela e as três extremidades livres dos enrolamentos são ligadas a três anéis coletores montados no eixo, permitindo a inserção de resistor variável em série em cada fase. b) rotor em curto-circuito, ou gaiola de esquilo (ou simplesmente gaiola) Consta de um núcleo em tambor, providos de ranhuras, nas quais são alojados fios ou barras de cobre curto-circuitados nos extremos por anéis. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 55/57 Mantenedor Mecânico - MINA b) categoria B Conjugado de partida normal; corrente de partida normal; baixo escorregamento. Constituem a maioria dos motores encontrados no mercado e prestam-se ao acionamento de cargas normais, como bombas, máquinas operatrizes, etc. c) categoria C Conjugado de partida alto; corrente de partida normal; baixo escorregamento. Usados para cargas que exigem maior conjugado na partida, como peneiras, transportadores carregados, cargas de alta inércia, etc. d) categoria D Conjugado de partida alto; corrente de partida normal; alto escorregamento (mais de 5%). Usados em prensas excêntricas e máquinas semelhantes, onde a carga apresenta picos periódicos. Usados também em elevadores e cargas que necessitam de conjugados muito altos e corrente de partida limitada. e) categoria F Conjugado de partida baixo; corrente de partida baixo; baixo escorregamento. Pouco usados, destinam-se a cargas com partidas freqüentes, porém sem necessidade de altos conjugados e onde é importante limitar a corrente de partida. Fator de Serviço O fator de serviço, é um fator que aplicado à potência nominal, indica a carga permissível que pode ser aplicada ao motor. Esse fator refere-se a uma capacidade de sobrecarga contínua, ou seja, uma reserva de potência que dá ao motor uma capacidade de suportar melhor o funcionamento em condições desfavoráveis. Classe de Isolamento A classe de isolamento, indicada por uma letra normalizada, identifica os tipos de materiais isolantes empregados no isolamento do motor. As classes de isolamento são definidas pelo respectivo limite de temperatura. De acordo com a ABNT existem as seguintes: − Classe A – 105º C − Classe E – 120º C − Classe B – 130º C − Classe F – 155º C − Classe H – 180º C Letra-Código A letra-código (código de partida) indica a corrente de rotor bloqueado, sob tensão nominal. Regime Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 56/57 Mantenedor Mecânico - MINA O regime é o grau de regularidade da carga a que o motor é submetido. Os motores normais são projetados para regime contínuo, isto é, um funcionamento com carga constante, por tempo indefinido, desenvolvendo potência nominal. São previstos, por norma, vários tipos de regimes de funcionamento. Grau de Proteção O grau de proteção é um código padronizado, formado pelas letras IP seguidas de um número de dois algarismos, que define o tipo de proteção do motor contra a entrada de água ou de objetos estranhos. Ligações A placa de identificação do motor contém um diagrama de ligações, a fim de permitir a ligação correta do motor ao sistema. 4.5 PARTIDA DE MOTORES Sempre que possível, a partida de um motor trifásico tipo gaiola deve ser direta (a plena tensão), por meio de um dispositivo de controle, geralmente um contator, entretanto, este método, como já vimos, exige da rede elétrica uma corrente muito elevada. Caso a partida direta não seja possível, quer pela exigência da concessionária (que no caso da instalação de baixa tensão exige, geralmente, que motores acima de 5 cv a partida seja por tensão reduzida), quer pela imposição da própria instalação, utilizam-se sistemas de partida indireta. Partida Com Chave Estrela-Triângulo A utilização deste método, que pode ser manual ou automática, pressupõe que o motor tenha a possibilidade de ligação em dupla tensão, por exemplo, 127/220 V, 380/660 V ou 440/760 V; os motores deverão ter no mínimo seis bornes de ligação. Partida Com Chave Compensadora Neste método, a tensão é reduzida através de um autotransformador, que possui normalmente derivações de 50, 65 e 80% da tensão nominal. 4.6 POTÊNCIA DE UM MOTOR A escolha de um motor para uma determinada aplicação é uma tarefa que exige o conhecimento de inúmeros dados relativos à operação que se tem em vista. Assim, por exemplo, podemos necessitar de uma operação contínua com carga variável (casos de bomba d’água) ou operação contínua com carga variável (casos de compressores de ar); também podemos ter operações descontínuas, com variação e inversão de rotação; em suma, é um problema que deve ser estudado em detalhe pelo instalador. Comandos Elétricos ____________________________________________________________ ____________________________________________________________ 57/57 Mantenedor Mecânico - MINA 5. REFERÊNCIAS BIBLIOGRÁFICAS 1. SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI – Eletricidade – Instalação Predial - 1981 2. SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI – Eletricista de Manutenção – Comandos Elétricos – BH - 1998 3. SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI – Eletricista de Manutenção – Introdução aos Comandos Elétricos – BH – 1998 4. SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI – Eletricista de Manutenção – Sensores – BH - 1998 5. CATÁLOGO GERAL – Motores Elétricos - WEG
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved