(Parte 3 de 4)

Existem muitos tipos de medidores e muitas aplicações. Os mais conhecidos serão descritos de modo resumido.

Medidor de nível

Para realizar o controle do nível correto de uma bebida embalada numa envólucro de alumínio utiliza-se uma fonte radioativa de baixa atividade (100 mCi) e um detector. As “latinhas” enfileiradas numa correia transportadora de alta velocidade, interceptam o feixe de radiação que sai da fonte e é registrado no detector. Se o líquido estiver acima do nível estabelecido, o feixe será atenuado bastante em comparação com a presença só de gás, quando um pouco vazia. Quando não preencher o requisito, uma pequena alavanca retira a lata do roteiro de empacotamento.

O mesmo princípio de variação brusca da atenuação do feixe de radiação que atravessa as paredes do invólucro e do material de preenchimento é utilizado, para controle de níveis de silos de grande porte para grãos, refinarias, usinas de processamento de coque e materiais para alto-forno.

Os parâmetros que variam são: tipo de fonte, atividade e tipo de radiação utilizada. Para materiais de grande espessura e dimensões, utilizasse fontes de maior atividade e radiação gama com maior energia. Por exemplo, Ra-226, Co-60, Cs-137, com atividade entre 1 a 5 Curies, para silos e depósitos. Para materiais de de baixa densidade e pequenas dimensões, como medidores de nível de latas, espessuras de papel, pesagem de cigarros, detectores de fumaça, utiliza-se o Am-241 e o Sr-90, com atividades entre 100 a 300 mCi, e as radiações gama de baixa energia, beta de alta energia ou alfa. Os riscos de acidentes são reduzidos devido à baixa atividade das fontes e os arranjos mecânicos de construção. Entretanto, não se pode ser negligente com fontes com atividade da ordem de Curie. Medidor de densidade e/ou umidade.

Alguns dispositivos possuem uma fonte que emite a radiação em direção ao material sob controle e colhem, num detector, a radiação espalhada ou induzida por fluorescência. Com isto, se pode avaliar o teor de umidade de um material ou a sua densidade. Nestes medidores, a fonte e os detectores estão montados num único equipamento portátil e devidamente blindado. São utilizados, por exemplo, na avaliação do nível de compactação durante o processo de concretagem de barragens em construção.

Com o uso de fontes de nêutrons, os materiais mais hidrogenados como água, óleo, petróleo, podem espalhar e moderar melhor os nêutrons devido à igualdade das massas de nêutron e próton, nas colisões sucessivas. Assim, um detector de nêutrons térmicos diferencia as regiões e locais onde existe muita moderação de nêutrons e, portanto, a presença de materiais muito hidrogenados. Usinas de processamento de coque, contendo coque e gás, tem seus depósitos monitorados com fontes de nêutrons e detectores montados num mesmo lado do silo. Os sinais são enviados para uma central de controle. Os processos de espalhamento e moderação de nêutrons podem servir de indicadores de água, petróleo, durante a perfuração de um poço.

Neste caso dispositivo com fonte e detector se encontram alojados na ponta do sistema de perfuração. Os riscos associados a estes medidores são pequenos, exceto por atuações negligentes no seu transporte , operação e manipulação. Eventualmente pode ocorrer perdas de fontes. Algumas necessitam ser resgatadas.

Detectores de fumaça

São dispositivos dotados de uma fonte radioativa emissora de radiação alfa, de baixa atividade, e um sistema de detecção que produz um sinal elétrico. Na presença de fumaça, atingindo um nível pré-estabelecido, ele pode iniciar um sinal de alarme ou mesmo disparar um sistema com spray de água. O risco associado a este tipo de medidor é mínimo.

Detectores de contaminação

Além dos detectores utilizados em instalações e laboratórios que utilizam materiais radioativos e nucleares para monitorar as superfícies, pessoas, objetos e fontes, existem outros, até mais sensíveis, em instalações da indústria convencional. Por exemplo em indústrias siderúrgicas que utilizam sucata e ferro velho, como matéria prima.

Neste caso, como são cargas volumosas transportadas por carretas, os detectores de NaI(Tl) são granes, numerosos e dispostos em toda a extensão de um grande portal, pelo qual passa o caminhão com toda sua carga. Caso exista algum material radioativo na carga, ele será detectado facilmente, impedindo que seja fundido junto com outros materiais.

Irradiadores industriais de grande porte

São instalações fixas ou móveis para tratamento, em larga escala, de materiais e alimentos que necessitam de esterilização biológica, modificação de algumas de suas propriedades físico-químicas ou impedimento de brotação ou apodrecimento.

Na esterilização de seringas descartáveis, preservativos, absorventes, material cirúrgico, etc., são utilizados feixes intensos de radiação gama de alta energia, provenientes de fontes de altíssima atividade. Nos irradiadores industriais de grande porte o conjunto de varetas contendo pastilhas metálicas de Co-60, pode atingir atividade de até 3 milhões de Curies.

O processo de esterilização é constituído da aplicação de dose elevadas de radiação nas caixas e containers, cheios dos materiais, que passam durante um intervalo de tempo, defronte ao feixe, movidos por uma esteira transportadora. As caixas são irradiadas de um lado e do outro para garantir a homogeneidade das doses aplicadas, na faixa de até vários kilo Grays.

A fonte é constituida de várias varetas de aço inox, dispostas num arranjo semelhante a de um secador de roupa de apartamento, contendo pastilhas empilhadas de Co-60 metálico, em seu interior. Quando recolhida, fica no fundo de uma piscina cheio de água , que funciona como blindagem para os operadores no processo de manutenção e ajustes.

Durante airradiação, a fonte é elevada até o nível de percurso das caixas em movimento contínuo na esteira. Todo o sistema é controlado de fora, uma vez que tudo deve ser extremamente blindado devido a altíssima atividade da fonte. Uma pessoa exposta por um segundo, num feixe deste tipo, morreria em poucos segundos. Com tudo isto, trata-se de uma instalação bastante segura, com poucos acidentes ocorridos no mundo.

Estes irradiadores podem, dependendo da dose radiação aplicada, inibir brotação em tubérculos (batata), bulbos (cebola e alho); destruir tenia, trichinella em carnes ; matar e esterilizar insetos em cereais, farinha, frutos frescos e secos; esterilizar larvas e reduzir a população de fungos em frutos e vegetais; destruir salmonella em carnes, frango, ovos; reduzir a população de micróbios em ingredientes e especiarias e preservar alimentos perecíveis, por longo período, sem refrigeração.

As unidades móveis, são mais utilizadas utilizadas para produtos agrícolas, na época de suas colheitas. São fontes de menor atividade que são transportadas até o local, em blindagens apropriadas. A estrutura mecânica para irradiação é também transportável.

Aceleradores de elétrons

Aceleradores de elétrons de baixa energia (menor que 8 MeV) e de feixes intensos são utilizados para tratamento de materiais em indústrias, por exemplo na melhoria da capacidade de isolamento elétrico de fios com revestimento de resina, plástico ou borracha, implementados por extrusão.

A eliminação de irregularidades e de bolhas de ar permite melhor compactação e homogeneidade de desempenho. Alguns materiais como, madeiras embebidas em polietileno, podem se tornar extremamente duras e resistentes à quebra, fricção ou arranhões, com a eliminação de átomos de hidrogênio e substituição de suas ligações químicas por ligação com átomos de carbono, mais forte, mas de modo aleatório, num mecanismo de “cross linking”, associado às fibras da madeira.

Estes aceleradores podem ser utilizados para tornar biodegradáveis, rejeitos e lixo, considerados de grande resistência no meio ambiente, quebrando as cadeias dos polímeros e anéis das moléculas químicas, pela irradiação.

APLICAÇÕES DA RADIAÇÃO NA AGRICULTURA E PESQUISA BIOLOGICA

Além da conservação de alimentos e insumos agrícolas por irradiação, muitas pesquisas biológicas são desenvolvidas utilizando radioisótopos. A técnica de traçadores para o desenvolvimento de vacinas, espécies resistentes, medicamentos, etc., é muito utilizada em trabalhos de desenvolvimento agrícola e ciências da saúde.

Fertilizantes marcados com fósforo -32 radioativo podem indicar a velocidade de captação dos nutrientes do solo pelas plantas e avaliar o desempenho de cada tipo, medindo-se com um detector, a variação do nível de atividade das folhas e várias partes de uma planta. Nos laboratórios onde se realizam estas pesquisas, é muito importante para os técnicos o treinamento de manipulação correta e segura das soluções e produtos radioativos, sob pena de sofrerem contaminação.

As atividades envolvidas nestes materiais radioativos se situam na faixa de 100 a 300 mCi. Assim, eles devem ser devidamente guardados, blindados, manipulados em capelas apropriadas e em áreas controladas.

Geocronologia e datação

Utilizando isótopos radioativos de meia-vida bem grande, inclusive da ordem da idade da Terra, possuindo uma abundância razoável para permitir sua medição e o tipo adequado de radiação, pode-se determinar a idade de formação e modificação de elementos geológicos, como por exemplo, rochas, lavas, cristalização, mudança de eixo magnético da Terra, idade de fósseis e formação de petróleo, carvão.

A datação de um animal ou planta com o C-14 se baseia no fato que, durante a sua vida, ele é absorvido junto com os alimentos, e assim, compensa, a quantidade que é perdida devido ao decaimento radioativo do isótopo. Em caso de morte, a absorção cessa abruptamente e, daí em diante só ocorre o decaimento em taxa fixas. Medindo-se a radioatividade restante na matéria orgânica morta, é possível calcular sua idade.

A datação com carbono-14 mais polêmica foi a do Santo-Sudário. Os resultados indicaram uma idade correspondente à Idade Média, e não de 2000 anos atrás, época da morte de Cristo. Alguns defensores, argumentaram que, a datação foi dos fungos e produtos de contaminação do sudário e não das fibras do tecido de linho.

Outros pesquisadores, acreditam que foi um elemento elaborado na Idade Média, época em que era muito comum a fabricação e venda de lembranças de eventos importantes, inclusive para fins de manipulação religiosa e comercial.

Obviamente que esta datação não é conclusiva, mas indicativa.

Geração de energia

Os radioisótopos podem ser utilizados como elementos para gerar energia térmica ou elétrica. Além das baterias que geram corrente elétrica em pequenas quantidades, existem os reatores nucleares que podem gerar até 1300. Megawatts por unidade.

Os reatores que usam a fissão em cadeia do U-235, se baseiam na transformação da energia cinética dos fragmentos de fissão, em calor, dentro do elemento combustível. Desta forma, é bom esclarecer que, embora o U-235 seja um isótopo radioativo do urânio natural, sua radioatividade não contribui para o processo de geração de energia.

Inclusive, se os seus fragmentos de fissão não fossem radioativos, após transferirem, por colisões sucessivas, sua energia cinética para a pastilha de urânio enriquecido , sob a forma de calor, o reator nuclear talvez fosse considerado uma máquina perfeita de geração de energia. Infelizmente, isto não ocorre e, assim, muitos dispositivos e trabalho associado são necessários para blindar as radiações (indesejáveis) e conter os rejeitos dos elementos combustíveis gastos.

O princípio básico de operação de um reator é a obtenção da reação nuclear de fissão do núcleo do U-235, ao capturar um nêutron. A energia liberada em cada fissão é cerca de 200 MeV. Assim, utilizando uma massa e uma geometria adequada de combustível enriquecido de U-235, denominada massa crítica, busca-se estabelecer o processo de reação de fissão em cadeia, onde os nêutrons produzidos numa fissão, após moderação, atingem outros núcleos de U-235, fissionando-os.

A manutenção da criticalidade da massa de combustível, permite a geração de grande quantidade de energia, sob a forma de calor que, posteriormente, é aproveitada para aquecer água e torná-la vapor num recipiente, denominado gerador de vapor. Este vapor aciona turbinas que, acopladas a geradores, geram eletricidade em grande escala. Como se pode observar, o reator é uma gerador termo-elétrico de energia, onde a fonte de calor está situada dentro do vaso de pressão.

Ao invés de ser proveniente da queima de gás, óleo ou carvão, como nas usinas convencionais, o calor provém da reação nuclear de fissão. Devido ao baixo nível de enriquecimento do U-235, de 1 a 3%, um reator nuclear nunca pode explodir como uma bomba atômica. Esta tem um nível de enriquecimento isotópico acima de 90%. Explosões de caráter químico e desastres de supercriticalidade podem ocorrer, conforme ocorreu com o reator de Chernobyl e de Thre Mile Island.

Acidentes em que ocorre a fusão do núcleo, por superaquecimento, acompanhado com uma explosão química que permite a liberação de grande quantidade de material radioativo ( fragmentos de fissão, produtos de ativação) para o ambiente, podem ocasionar a contaminação de extensas áreas, até países, e causar a morte de muitas pessoas.

Daí a necessidade de um procedimento rigoroso de licenciamento, inspecção e manutenção da qualidade, para evitar tais eventos. Pequenos reatores, podem ser feitos para acionar dispositivos que necessitam de energia elétrica em satélites e estações espaciais, bem como navios e submarinos com fins militares. Nestes dispositivos o importante é o controle dos efluentes e, no caso de satélites, a sua queda em ambientes habitados, causando danos e contaminação radioativa.

Sanitização de esgotos

O uso de fontes radioativas e de grande utilidade nas estações de tratamento de esgotos pois se sabe que a radiação ionizante mata bactérias e micoorganismos, sendo portanto de grande aplicação nessa área.

Arqueologia, paleontologia e conservação de obras de arte. As radiações ionizantes também podem ser utilizadas no estudo de múmias uma vez que se torna possível observá-las ser ter que abrir seu envoltório.

No que se refere à conservação de objetos antigos tais como livros e obras de artes, o uso das radiações ionizantes tem grande aplicação pois seu emprego destrói fungos e bactérias conforme pode ser visto na figura abaixo.

Aplicações agronômicas

Mediante o emprego da técnica de auto-radiografia pode-se estudar o modo como se distribuem os fertilizantes nas plantas. O método consiste em empregar fertilizantes que possuem na sua composição radionuclídeos que emitem radiação (por exemplo, o fósforo 32 que emite radiação b) e analisar a imagem obtida.

Recursos hídricos

O movimento das correntes marítimas, das marés assim como o movimento de correntes em rios pode ser rastreado agregando-se radionuclídeos as águas e monitorando sua dispersão e/ou velocidade através da detecção da radiação em diferentes pontos que se deseja avaliar.

Produção de energia elétrica.

A produção de energia elétrica a partir do combustível nuclear em uma usina nuclear é uma importante aplicação das radiações ionizantes. No Brasil, existem duas usinas nucleares em funcionamento na região de Angra dos Reis que são responsáveis pelo fornecimento de aproximadamente 8% da energia gerada no País. Uma terceira unidade esta em discussão para ser implantada na mesma região.

Indústria

A principal aplicação industrial das radiações ionizantes se dá através de uma técnica chamada gamagrafia. Essa técnica consiste em irradiar peças metálicas com fontes de radiação gama, pois esse tipo de radiação tem alto poder de penetração. A gamagrafia apresenta vantagens sobre o uso de raios X, pois as fontes são portáteis e não precisam de energia elétrica para seu funcionamento. Sua principal aplicação esta na detecção de imperfeições em peças, principalmente em soldas.

Em hidrologia

Pode-se controlar o nível de um líquido em um tanque empregando-se a radiação gama. Coloca-se a fonte numa determinada altura e um detector do lado oposto. Quando o líquido ultrapassa essa determinada altura, haverá uma diminuição na detecção por conta da absorção da radiação pelo líquido. Sendo assim e possível monitorar a capacidade de um reservatório, por exemplo.

Portos, aeroportos e fronteiras.

Atualmente tem sido de grande utilidade o uso de radiações ionizantes no controle de portos aeroportos e fronteiras. Seu uso permite avaliar o conteúdo de cargas assim como verificar se clandestinos estão escondidos misturados às cargas. O método também permite checar se uma pessoa esta ou não portando armas.

Conservação de alimentos.

A irradiação de alimentos é realizada principalmente com o emprego de cobalto 60. Sua aplicação inibe a germinação e a formação de brotos durante um longo período. Há uma redução da velocidade do processo fisiológico da maturação (frutas) e germinação (cebola, batata, etc..). Os efeitos bactericidas são atingidos pela redução no número de microorganismos responsáveis pela deterioração dos alimentos (peixes, ovos, carnes, etc...).

O principal problema com esse método é o descrédito do público, que acredita que os alimentos se tornam radioativos e resistem a ingeri-los. No que se refere aos órgãos governamentais, constata-se também uma demora no processo de autorização para sua comercialização.

EFEITOS BIOLÓGICOS DAS RADIAÇÕES IONIZANTES

Os efeitos biológicos da radiação são a consequência de uma longa série de acontecimentos que se inicia pela excitação e ionização de moléculas no organismo. Há dois mecanismos pelos quais as alterações químicas nas moléculas são produzidas pela radiação ionizante: efeitos diretos e indiretos. No processo de interação da radiação com a matéria ocorrem ionização e excitação dos átomos e moléculas provocando modificação (ao menos temporária) nas moléculas. O dano mais importante é o que ocorre no DNA.

Efeitos físicos: 10-13 s

Efeitos químicos: 10-10 s

Efeitos biológicos: minutos-anos, é a resposta natural do organismo a um agente agressor, não constitui necessariamente em doença. Ex: redução de leucócitos.

Efeitos orgânicos: são as doenças. Incapacidade de recuperação do organismo devido à freqüência ou quantidade dos efeitos biológicos. Ex: catarata, câncer, leucemia.

Efeitos da radiação ionizante nos serem humanos

Classificação dos efeitos Biológicos

Classificação segundo a Dose Absorvida: Estocásticos ou Determinísticos

(Parte 3 de 4)

Comentários