Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Redes - 3ed, Notas de estudo de Engenharia de Produção

Básico sobre redes

Tipologia: Notas de estudo

2011

Compartilhado em 22/03/2011

levi-goncalves-11
levi-goncalves-11 🇧🇷

1 documento

1 / 204

Documentos relacionados


Pré-visualização parcial do texto

Baixe Redes - 3ed e outras Notas de estudo em PDF para Engenharia de Produção, somente na Docsity! Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net A: Guia completo 3º TE Carlos E. Morimoto www.guiadohardware.net Direitos Autorais Este e-book foi escrito por Carlos E. Morimoto (morimotoGDguiadohardware.net) e é vendido através do Guia do Hardware, no endereço http://www .guiadohardware.net. Apesar de estar em formato digital, este livro não é de livre distribuição. A coleção completa, que além deste inclui os e-books Manual de Hardware Completo 3º Ed, Guia de Novas tecnologias 3º Ed, Guia de Upgrade e Manutenção e Placas 3D, modelos e recursos, por um preço simbólico de 8 reais através do próprio autor. Se você recebeu este e-book de outra forma, através de um amigo, num CD de revista, através de algum Website, saiba que têm em mãos uma cópia pirata, que apesar de ter o mesmo conteúdo do original, não remunera o autor pelo seu trabalho e desestimula o aparecimento de mais títulos como este. Se for o seu caso, seja honesto e adquira o pacote com todos os e-books através do Guia do Hardware, através do link: http://www .guiadohardware.net/e-books/index.asp O pagamento pode ser feito de várias formas, incluindo deposito bancário, vale postal, carta, etc. Os 8 reais podem não fazer muita diferença para você, mas se não fosse a contribuição de cada leitor, este trabalho não existiria. Não deixe de visitar o Guia do Hardware para conhecer nossos outros trabalhos: http://www .guiadohardware.net/ Detalhes sobre o ICS................ii iii Compartilhar a conexão usando o Analog-X Proxy. Acessando um Servidor Windows 2000 ou Windows NT Acessando um Servidor Novell NetWare. Conectando-se a uma VPN Segurança na Internet... Como são feitas as invasões. Como se proteger Trojans............. Bugs .......... Portas TCP abertas. Roubo de dados e senhas. Antivírus. Firewalls e portas TCP. Dicas para tornar seu Windows 2000 um sistema seguro. O básico. Contas. Serviços................. Teste sua segurança. Patches ................. O bom e velho firewall Spywares............... Como configurar um servidor Linux A distribuição. Instalando... Particionando o HD . As partições no Linux.... Pacotes de Aplicativos. Finalizando ............ Acesso à Web e rede Gerenciador de boot Configuração do vídeo. Como instalar via rede ou apartir do HD Colocando a mão na massa. Comandos do prompt...... Fechando programas travados . Montando e desmontando................csi iss. Acessando a partição do Windows apartir do Linux. O terceiro botão ..............i..s. iii Editando arquivos de texto. Desligando ................. Configurando o Servidor Samba.............. ll... Acessando com partilhamentos de máquinas Windows . Configurando manualmente. Usando o NFS. Apache......... Servidores em Cluster e balanceamento de carga Economizando com o uso de terminais leves.. Montando a rede... Terminais via VNC Rodar aplicativos a partir do servidor Rodando aplicativos via SSH ...........cciscisieesereeerenaeeeeeaneamaeemes Rodar a interface gráfica e todos os programas a partir do servidor Estações diskless com o Etherboot...............ccisceieeserserenieeanes a Usando os terminais ................iii isso its sreeerere nana are nan area aan anesananes ae nan aras ana aresananeras 200 Prefácio As redes vem sendo cada vez mais utilizadas, não apenas em grandes empresas, mas em pequenos escritórios, ou mesmo em casa. A demanda por profissionais qualificados neste mercado vem tornando-se cada vez maior, e as remunerações não são nada ruins. Mesmo que você não pretenda tornar-se um especialista em redes, possuir pelo menos os conhecimentos básicos irá ajudar bastante sua carreira profissional. Se você já trabalha como técnico poderá agora oferecer mais um serviço a seus clientes. Montar e configurar redes pequenas e médias é uma tarefa surpreendentemente simples. O objetivo deste livro é lhe dar todo o conhecimento necessário para montar redes de pequeno porte, como as usadas em casas e escritórios, incluindo compartilhamento da mesma conexão à Intemet, configuração de endereços IP, etc. Porém, também são abordados tópicos mais avançados, como a configuração de máscaras de sub-rede complexas, criação de redes virtuais, etc. que lhe darão uma boa idéia de como montar redes mais complexas. Apesar do assunto parecer bastante técnico, procurei usar uma linguagem os mais didática possível, abordando todos os detalhes, porém sem cair no tecnismo, a mesma linguagem que uso em meus outros livros usuários e pode cruzar os dados sempre que preciso; descobrindo por exemplo um horário em que todos estejam livres para que uma reunião seja marcada. Jogos em Rede Mais um recurso que vem sendo cada vez mais utilizado, são os jogos multiplayer como Quake 3 e Diablo Il que podem ser jogados através da rede. A maior vantagem neste caso, é que a comunicação permitida pela rede é muito mais rápida que uma ligação via modem, evitando o famoso LAG, ou lentidão, que tanto atrapalha quando jogamos os mesmos jogos via Internet. Em geral, depois de configurada a rede, a configuração dentro do jogo é bastante simples, basta verificar quais protocolos de rede são suportados. Atualmente, a maioria dos jogos suporta multiplayer via TCP/IP. Não apenas os jogos, mas vários outros recursos, como o compartilhamento de conexão só funcionarão com este protocolo. Apenas alguns jogos antigos, como o Warcraft Il exigem IPX/SPX, ou mesmo o uso de um cabo serial. No Diablo Il por exemplo, basta acessar a opção Multiplayer Game. Configure o PC mais rápido como host, ou seja, quem irá sediar o jogo e permitir a conexão dos outros PCs. Nos demais, basta escolher a opção de conectar-se ao host e fornecer seu (do host) endereço IP, configurado nas propriedades da conexão de rede, como por exemplo 192.168.0.1 Compartilhando a conexão com a Internet Este é provavelmente o uso mais comum para as redes hoje em dia. Antigamente se falava em uma proporção de 80/20 entre os dados que trafegam entre os micros da rede local e os dados que vão para a Internet. Hoje em dia esta proporção é muito diferente, a maior parte dos dados vai para a Internet. Muita gente trabalha apenas usando o navegador e o cliente de e-mails e cada vez mais as redes das empresas estão se integrando à Web para permitir que clientes e os próprios funcionários tenham acesso às informações em qualquer lugar. Hoje em dia é muito simples compartilhar a conexão com a Internet e veremos ao longo do livro tanto como compartilhar a conexão a partir de um servidor Windows quanto a partir de um servidor linux. Afinal, pra quê ter um modem e uma linha telefônica para cada micro se você pode ter uma conexão de alta velocidade com partilhada entre todos a um custo muito mais baixo? Terminais leves Este é mais uma possibilidade interessante. Por que sofrer com a lentidão dos 486, ou gastar rios de dinheiro para substituí-los por micros novos se você pode interliga-los a um micro mais rápido e rodar os aplicativos a partir do servidor, apenas direcionando a saída de tela para os terminais 486? Com um Pentium Ill ou Duron como servidor você terá potência de sobra para 10 ou até mesmo 20 terminais. Veremos como colocar esta idéia em prática no final do livro. 10 Como as redes funcionam Genericamente falando, existem dois tipos de rede, chamadas LAN e WAN. A diferença é que enquanto uma LAN (local area network, ou rede local) é uma rede que une os micros de um escritório, prédio, ou mesmo um conjunto de prédios próximos, usando cabos ou ondas de rádio, uma WAN (wide area network, ou rede de longa distância) interliga micros situados em cidades, países ou mesmo continentes diferentes, usando links de fibra óptica, microondas ou mesmo satélites. Geralmente uma WAN é formada por várias LANS interligadas: as várias filiais de uma grande empresa por exemplo. Placas de Rede O primeiro componente de uma rede é justamente a placa de rede. Além de funcionar como um meio de comunicação, a placa de rede desempenha várias funções essenciais, como a verificação da integridade dos dados recebidos e a correção de erros. A placa de rede deverá ser escolhida de acordo com a arquitetura de rede escolhida (Ethernet ou Token Ring) e também de acordo com o tipo de cabo que será usado. Atualmente, as placas mais comuns são as placas Ethernet 10/100, que utilizam cabos de par trançado e vem em versão PCI: Placa de rede Fast Ethernet (cortesia da 3com) Cabos Para haver comunicação entre as placas de rede é necessário algum meio físico de comunicação. Apesar dos cabos de cobre serem de longe os mais utilizados, podemos também usar fibra óptica ou mesmo ondas de rádio. Em matéria de cabos, os mais utilizados são os cabos de par trançado, cabos coaxiais e cabos de fibra óptica. Cada categoria tem suas próprias vantagens e limitações, sendo mais adequado para um tipo específico de rede. Os cabos coaxiais permitem que os dados sejam transmitidos através de uma distância maior que a permitida pelos cabos de par trançado sem blindagem (UTP), mas por outro, lado não são tão flexíveis e são mais caros que eles. Os cabos de fibra óptica permitem transmissões de dados a velocidades muito maiores e são completamente imunes a qualquer tipo de interferência eletromagnética, porém, são muito mais caros e difíceis de instalar, demandando equipamentos mais caros e mão de obra mais especializada. Apesar da alta velocidade de transferência, as fibras ainda não são uma boa opção 11 - Carlo Guia completo de R . Morimoto http para pequenas redes devido ao custo. Cabo de par trançado e cabo coaxial Topologias Temos em seguida, a topologia da rede, ou seja, de que forma os micros são interligados. Como quase tudo em computação, temos aqui uma divisão entre topologias físicas e topologias lógicas. A topologia física é a maneira como os cabos conectam fisicamente os micros. A topologia lógica, por sua vez, é a maneira como os sinais trafegam através dos cabos e placas de rede. As redes Ethernet, por exemplo, usam uma topologia lógica de barramento, mas podem usar topologias físicas de estrela ou de barramento. As redes Token Ring, por sua vez, usam uma topologia lógica de anel, mas usam topologia física de estrela. Não se preocupe pois vamos ver tudo com detalhes mais adiante :-) Temos três tipos de topologia física, conhecidas como topologia de barramento, de estrela e de anel. A topologia de barramento é a mais simples das três, pois nela um PC é ligado ao outro, usando cabos coaxiais. Na topologia de estrela, os micros não são ligados entre sí, mas sim a um hub, usando cabos de par trançado. O Hub permite que todos os micros conectados se vejam mutuamente. Finalmente temos a topologia de anel, onde apenas um cabo passa por todos os micros e volta ao primeiro, formando um anel fechado. A topologia de anel físico é praticamente apenas uma teoria, pois seria complicado e problemático demais montar uma rede deste tipo na prática. Sempre que ouvir falar em uma rede com topologia de anel, pode ter certeza que na verdade se trata de uma rede Token Ring, que usa uma topologia de anel lógico, mas que ao mesmo tempo usa topologia física de estrela. 12 numa rede, todos são usados por alguém, mas um deles compartilha uma impressora e outro disponibiliza arquivos, temos dois servidores não dedicados, respectivamente de impressão e de arquivos. Outro vocábulo bastante usado no ambiente de redes é o termo “estação de trabalho”. Qualquer micro conectado à rede, e que tenha acesso aos recursos compartilhados por outros micros da rede, recebe o nome de estação de trabalho. Você também ouvirá muito o termo “nó de rede”. Um nó é qualquer aparelho conectado à rede, seja um micro, uma impressora de rede, um servidor ou qualquer outra coisa que tenha um endereço na rede. N.0.s. Finalmente chegamos ao último componente da rede, o NOS, ou “Network Operational System”. Qualquer sistema operacional que possa ser usado numa rede, ou seja, que ofereça suporte à redes pode ser chamado de NOS. Temos nesta lista o Windows 3.11 for Workgroups, o Windows 95/98, Windows NT, Windows 2000, Novell Netware, Linux, Solaris, entre vários outros. Cada sistema possui seus próprios recursos e limitações, sendo mais adequado para um tipo específico de rede. Hoje em dia, os sistemas mais usados como servidores domésticos ou em pequenas empresas são o Windows 2000 Server (ou NT Server) e o Linux, que vem ganhando espaço. O mais interessante é que é possível misturar PCs rodando os dois sistemas na mesma rede, usando o Samba, um software que acompanha a maior parte das distribuições do Linux que permite que tanto uma máquina Linux acesse impressoras ou arquivos de um servidor Windows, quanto que um servidor Linux substitua um servidor Windows, disponibilizando arquivos e impressoras para clientes rodando Windows. O Samba não é tão fácil de configurar quanto os compartilhamentos e permissões de acesso do Windows, mas em termos de funcionalidade e desempenho não deixa nada a desejar. Você pode encontrar maiores informações sobre ele no http://www.samba.org/ Cabeamento Até agora tivemos apenas uma visão geral sobre os componentes e funcionamento das redes. Vamos agora estudar tudo com mais detalhes, começando com os sistemas de cabeamento que você pode utilizar em sua rede. Como já vimos, existem três tipos diferentes de cabos de rede: os cabos coaxiais, cabos de par trançado e os cabos de fibra óptica. Cabo coaxial Os cabos coaxiais são cabos constituídos de 4 camadas: um condutor interno, o fio de cobre que 15 transmite os dados; uma camada isolante de plástico, chamada de dielétrico que envolve o cabo interno; uma malha de metal que protege as duas camadas internas e, finalmente, uma nova camada de revestimento, chamada de jaqueta. Fio de cobre me isolamento interno Jaqueta A Malha de metal (dielétrico) Se você envolver um fio condutor com uma segunda camada de material condutor, a camada externa protegerá a primeira da interferência externa. Devido a esta blindagem, os cabos coaxiais (apesar de ligeiramente mais caros que os de par trançado) podem transmitir dados a distâncias maiores, sem que haja degradação do sinal. Existem 4 tipos diferentes de cabos coaxiais, chamados de 10Base5, 10Base2, RG-59/U e RG-62/U O cabo 10Base5 é um tipo mais antigo, usado geralmente em redes baseadas em mainframes. Esta cabo é muito grosso, tem cerca de 0.4 polegadas, ou quase 1 cm de diâmetro e por isso é muito caro e difícil de instalar devido à baixa flexibilidade. Outro tipo de cabo coaxial pouco usado atualmente é o RG62/U, usado em redes Arcnet. Temos também o cabo RG-59/U, usado na fiação de antenas de TV. Além da baixa flexibilidade e alto custo, os cabos 10Base5 exigem uma topologia de rede bem mais cara e complicada. Temos o cabo coaxial 1Obase5 numa posição central, como um backbone, sendo as estações conectadas usando um segundo dispositivo, chamado transceptor, que atua como um meio de ligação entre elas e o cabo principal. Os transceptores perfuram o cabo 10Base5, alcançando o cabo central que transmite os dados, sendo por isso também chamados de “derivadores vampiros”. Os transceptores são conectados aos encaixes AUI das placas de rede (um tipo de encaixe parecido com a porta de joystick da placa de som, encontrado principalmente em placas antigas) através de um cabo mais fino, chamado cabo transceptor. Além de antiquada, esta arquitetura é muito cara, tanto a nível de cabos e equipamentos, quanto em termos de mão de obra. [jr y v v Cabo 1OBase5 Transceptor Terminador Os cabos 10Base5 foram praticamente os únicos utilizados em redes de mainframes no inicio da 16 década de 80, mas sua popularidade foi diminuindo com o passar do tempo por motivos óbvios. Atualmente você só se deparará com este tipo de cabo em instalações bem antigas ou, quem sabe, em museus ;-) Finalmente, os cabos 10Base2, também chamados de cabos coaxiais finos, ou cabos Thinnet, são os cabos coaxiais usados atualmente em redes Ethernet, e por isso, são os cabos que você receberá quando pedir por “cabos coaxiais de rede”. Seu diâmetro é de apenas 0.18 polegadas, cerca de 4.7 milímetros, o que os torna razoavelmente flexíveis. Os cabos 10Base2 são bem parecidos com os cabos usados em instalações de antenas de TV, a diferença é que, enquanto os cabos RG-59/U usados nas fiações de antena possuem impedância de 75 ohms, os cabos 10Base2 possuem impedância de apenas 50 ohms. Por isso, apesar dos cabos serem parecidos, nunca tente usar cabos de antena em redes de micros. E fácil diferenciar os dois tipos de cabo, pois os de redes são pretos enquanto os para antenas são brancos. O “10” na sigla 10Base2, significa que os cabos podem transmitir dados a uma velocidade de até 10 megabits por segundo, “Base” significa “banda base” e se refere à distância máxima para que o sinal pode percorrer através do cabo, no caso o “2” que teoricamente significaria 200 metros, mas que na prática é apenas um arredondamento, pois nos cabos 10Base2 a distância máxima utilizável é de 185 metros. Usando cabos 10Base2, o comprimento do cabo que liga um micro ao outro deve ser de no mínimo 50 centímetros, e o comprimento total do cabo (do primeiro ao último micro) não pode superar os 185 metros. É permitido ligar até 30 micros no mesmo cabo, pois acima disso, o grande número de colisões de pacotes irá prejudicar o desempenho da rede, chegando ao ponto de praticamente impedir a comunicação entre os micros em casos extremos. 30 micros no máximo Máximo 185 metros + + Conectamos o cabo coaxial fino à placa de rede usando conectores BCN, que por sua vez são ligados a conectores T ligados na placa de rede. Usando cabos coaxiais os micros são ligados uns aos outros, com um cabo em cada ponta do conector T. 17 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Cabo de par Trançado Além dos cabos sem blindagem (como o da foto) conhecidos como UTP (Unshielded Twisted Pair), existem os cabos blindados conhecidos como STP (Shielded Twisted Pair). A única diferença entre eles é que os cabos blindados além de contarem com a proteção do entrelaçamento dos fios, possuem uma blindagem externa (assim como os cabos coaxiais), sendo mais adequados a ambientes com fortes fontes de interferências, como grandes motores elétricos e estações de rádio que estejam muito próximas. Outras fontes menores de interferências são as lâmpadas fluorescentes (principalmente lâmpadas cansadas que ficam piscando), cabos elétricos quando colocados lado a lado com os cabos de rede e mesmo telefones celulares muito próximos dos cabos. Quanto maior for o nível de interferência, menor será o desempenho da rede, menor será a distância que poderá ser usada entre os micros e mais vantajosa será a instalação de cabos blindados. Em ambientes normais porém os cabos sem blindagem costumam funcionar bem. Existem no total, 5 categorias de cabos de par trançado. Em todas as categorias a distância máxima permitida é de 100 metros. O que muda é a taxa máxima de transferência de dados e o nível de imunidade a interferências . Categoria 1: Este tipo de cabo foi muito usado em instalações telefônicas antigas, porem não é mais utilizado. Categoria 2: Outro tipo de cabo obsoleto. Permite transmissão de dados a até 4 mbps. Categoria 3: Era o cabo de par trançado sem blindagem usado em redes até alguns anos atrás. Pode se estender por até 100 metros e permite transmissão de dados a até 10 Mbps. A diferença do cabo de categoria 3 para os obsoletos cabos de categoria 1 e 2 é o numero de tranças. Enquanto nos cabos 1 e 2 não existe um padrão definido, os cabos de categoria 3 (assim como os de categoria 4 e 5) possuem atualmente de 24 a 45 tranças por metro, sendo muito mais resistente a ruídos externos. Cada par de cabos tem um número diferente de tranças por metro, o que atenua as interferências entre os cabos. Praticamente não existe a possibilidade de dois pares de cabos terem exatamente a mesma disposição de tranças. Categoria 4: Por serem blindados, estes cabos já permitem transferências de dados a até 16 mbps, e são o requisito mínimo para redes Token Ring de 16 mbps, podendo ser usados também em redes Ethernet de 10 mbps no lugar dos cabos sem blindagem. Categoria 5: Este é o tipo de cabo de par trançado usado atualmente, que existe tanto em versão blindada quanto em versão sem blindagem, a mais comum. A grande vantagem sobre esta categoria de cabo sobre as anteriores é a taxa de transferência, até 100 mbps. 20 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Os cabos de categoria 5 são praticamente os únicos que ainda podem ser encontrados à venda, mas em caso de dúvida basta checas as inscrições decalcadas no cabo, entre elas está a categoria do cabo, como na foto abaixo: “Category 5e” Independentemente da categoria, todos os cabos de par trançado usam o mesmo conector, chamado RJ-45. Este conector é parecido com os conectores de cabos telefônicos, mas é bem maior por acomodar mais fios. Uma ponta do cabo é ligada na placa de rede e a outra no hub. Para crimpar o cabo, ou seja, para prender o cabo ao conector, usamos um alicate de crimpagem. Após retirar a capa protetora, você precisará tirar as tranças dos cabos e em seguida “arruma- los” na ordem correta para o tipo de cabo que estiver construindo (veremos logo adiante) Veja que o que protege os cabos contra as interferências externas é são justamente as tranças. A parte destrançada que entra no conector é o ponto fraco do cabo, onde ele é mail vulnerável a todo tipo de interferência. Por isso, é recomendável deixar um espaço menor possível sem as tranças, se possível menos de 2,5 centímetros. Para isso, uma sugestão é que você destrance um pedaço suficiente do fio, para ordena-los confortavelmente e depois corte o excesso, deixando apenas os 2 centímetros que entrarão dentro do conector: 21 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net a Finalmente, basta colocar os fios dentro do conector e pressiona-lo usando um alicate de crimpagem. A função do alicate é fornecer pressão suficiente para que os pinos do conector RJ-45, que internamente possuem a forma de lâminas, esmaguem os fios do cabo, alcançando o fio de cobre e criando o contato. Você deve retirar apenas a capa externa do cabo e não descascar individualmente os fios, pois isto ao invés de ajudar, serviria apenas para causar mau contato, deixado o encaixe com os pinos do conector “frouxo”. 22 apresentam uma resistência equivalente ou até superior. Mau contato: Usando cabo coaxial, a tendência a ter problemas na rede é muito maior, pois este tipo de cabo costuma ser mais suscetível a mau contato do que os cabos de par trançado. Outra desvantagem é que usando o coaxial, quando temos problemas de mau contato no conector de uma das estações, a rede toda cai, pois as duas “metades” não contam com terminadores nas duas extremidades. Para complicar, você terá que checar PC por PC até encontrar o conector com problemas, imagine fazer isso numa rede com 20 micros... Usando par trançado, por outro lado, apenas o micro problemático ficaria isolado da rede, pois todos os PCs estão ligados ao hub e não uns aos outros. Este já é uma argumento forte o suficiente para explicar a predominância das redes com cabo de par trançado. Custo: Os cabos coaxiais são mais caros que os cabos de par trançado sem blindagem, mas normalmente são mais baratos que os cabos blindado. Por outro lado, usando cabos coaxiais você não precisará de um hub. Atualmente já existem hubs de 8 portas por menos de 100 reais, não é mais um artigo caro como no passado. Velocidade máxima: Se você pretende montar uma rede que permita o tráfego de dados a 100 mbps, então a única opção é usar cabos de par trançado categoria 5, pois os cabos coaxiais são limitados apenas 10 mbps. Atualmente é complicado até mesmo encontrar placas de rede com conectores para cabo coaxial, pois apenas as placas antigas, ISA de 10 megabits possuem os dois tipos de conector. As placas PCI 10/100 possuem apenas o conector para cabo de par trançado. Fibra óptica Ao contrário dos cabos coaxiais e de par trançado, que nada mais são do que fios de cobre que transportam sinais elétricos, a fibra óptica transmite luz e por isso é totalmente imune a qualquer tipo de interferência eletromagnética. Além disso, como os cabos são feitos de plástico e fibra de vidro (ao invés de metal), são resistentes à corrosão. A distância permitida pela fibra também é bem maior: os cabos usados em redes permitem segmentos de até 1 KM, enquanto alguns tipos de cabos especiais podem conservar o sinal por até 5 KM (distâncias maiores são obtidas usando repetidores). Mesmo permitindo distâncias tão grandes, os cabos de fibra óptica permitem taxas de transferências de até 155 mbps, sendo especialmente úteis em ambientes que demandam uma grande transferência de dados. Como não soltam faíscas, os cabos de fibra óptica são mais seguros em ambientes onde existe perigo de incêndio ou explosões. E para completar, o sinal transmitido através dos cabos de fibra é mais difícil de interceptar, sendo os cabos mais seguros para transmissões sigilosas. As desvantagens da fibra residem no alto custo tanto dos cabos quanto das placas de rede e instalação que é mais complicada e exige mais material. Por isso, normalmente usamos cabos de par trançado ou coaxiais para fazer a interligação local dos micros e um cabo de fibra óptica para servir como backbone, unindo duas ou mais redes ou mesmo unindo segmentos da mesma rede que estejam distantes. O cabo de fibra óptica é formado por um núcleo extremamente fino de vidro, ou mesmo de um tipo especial de plástico. Uma nova cobertura de fibra de vidro, bem mais grossa envolve e 25 Guia completo de Re - Carlos E. Morimoto http net .guiadoha protege o núcleo. Em seguida temos uma camada de plástico protetor cnamada de cladding, uma nova camada de isolamento e finalmente uma capa externa chamada bainha. Núcleo om o. Bainha + | Cobertura de Isolamento Cladding fibra A luz a ser transmitida pelo cabo é gerada por um LED, ou diodo emissor de luz. Chegando ao destino, o sinal luminoso é decodificado em sinais digitais por um segundo circuito chamado de foto-diodo. O conjunto dos dois circuitos é chamado de CODEC, abreviação de codificador/ decodificador. Existem dois tipos de cabos de fibra óptica, chamados de cabos monomodo e multimodo, ou simplesmente de modo simples e modo múltiplo. Enquanto o cabo de modo simples transmite apenas um sinal de luz, os cabos multimodo contém vários sinais que se movem dentro do cabo. Ao contrário do que pode parecer à primeira vista, os cabos monomodo transmitem mais rápido do que os cabos multimodo, pois neles a luz viaja em linha reta, fazendo o caminho mais curto. Nos cabos multimodo o sinal viaja batendo continuamente mas paredes do cabo, tornando-se mais lento e perdendo a intensidade mais rapidamente. Ao contrário do que costuma-se pensar, os cabos de fibra óptica são bastante flexíveis e podem ser passados dentro de conduítes, sem problemas. Onde um cabo coaxial entra, pode ter certeza que um cabo de fibra também vai entrar. Não é necessário em absoluto que os cabos fiquem em linha reta, e devido às camadas de proteção, os cabos de fibra também apresentam uma boa resistência mecânica. A velocidade de 155 mbps que citei a pouco, assim como as distâncias máximas dos cabos de fibra, referem-se às tecnologias disponíveis para o uso em pequenas redes, cujas placas e demais componentes podem ser facilmente encontrados. Tecnologias mais caras e modernas podem atingir velocidades de transmissão na casa dos Terabits por segundo, atingindo distância de vários quilômetros. Aliás, a velocidade de transmissão nas fibras ópticas vem evoluindo bem mais rápido que os processadores, ou outros componentes, por isso é difícil encontrar material atualizado sobre as tecnologias mais recentes. Placas de Rede A placa de rede é o hardware que permite aos micros conversarem entre sí através da rede. Sua função é controlar todo o envio e recebimento de dados através da rede. Cada arquitetura de rede exige um tipo específico de placa de rede; você jamais poderá usar uma placa de rede Token Ring em uma rede Ethernet, pois ela simplesmente não conseguirá comunicar-se com as demais. 26 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Além da arquitetura usada, as placas de rede à venda no mercado diferenciam-se também pela taxa de transmissão, cabos de rede suportados e barramento utilizado. Quanto à taxa de transmissão, temos placas Ethernet de 10 mbps e 100 mbps e placas Token Ring de 4 mbps e 16 mbps. Como vimos na trecho anterior, devemos utilizar cabos adequados à velocidade da placa de rede. Usando placas Ethernet de 10 mbps por exemplo, devemos utilizar cabos de par trançado de categoria 3 ou 5, ou então cabos coaxiais. Usando uma placas de 100 mbps o requisito mínimo a nível de cabeamento são cabos de par trançado blindados nível 5. No caso de redes Token Ring, os requisitos são cabos de par trançado categoria 2 (recomendável o uso de cabos categoria 3) para placas de rede de 4 Mbps, e cabos de par trançado blindado categoria 4 para placas de 16 mbps. Devido às exigência de uma topologia em estrela das redes Token Ring, nenhuma placa de rede Token Ring suporta o uso de cabos coaxiais. Cabos diferentes exigem encaixes diferentes na placa de rede. O mais comum em placas Ethernet, é a existência de dois encaixes, uma para cabos de par trançado e outro para cabos coaxiais. Muitas placas mais antigas, também trazem encaixes para cabos coaxiais do tipo grosso (10Base5), conector com um encaixe bastante parecido com o conector para joysticks da placa de som. Placas que trazem encaixes para mais de um tipo de cabo são chamadas placas combo. A existência de 2 ou 3 conectores serve apenas para assegurar a compatibilidade da placa com vários cabos de rede diferentes. Naturalmente, você só poderá utilizar um conector de cada vez. Placa combo As placas de rede que suportam cabos de fibra óptica, são uma exceção, pois possuem encaixes apenas para cabos de fibra. Estas placas também são bem mais caras, de 5 a 8 vezes mais do que as placas convencionais por causa do CODEC, o circuito que converte os impulsos elétricos recebidos em luz e vice-versa que ainda é extremamente caro. Finalmente, as placas de rede diferenciam-se pelo barramento utilizado. Atualmente você encontrará no mercado placas de rede ISA e PCI usadas em computadores de mesa e placas PCMCIA, usadas em notebooks e handhelds. Existem também placas de rede USB que vem sendo cada vez mais utilizadas, apesar de ainda serem bastante raras devido ao preço salgado. Naturalmente, caso seu PC possua slots PCI, é recomendável comprar placas de rede PCI pois além de praticamente todas as placas PCI suportarem transmissão de dados a 100 mbps (todas as placas de rede ISA estão limitadas a 10 mbps devido à baixa velocidade permitida por este barramento), você poderá usá-las por muito mais tempo, já que o barramento ISA vem sendo cada vez menos usado em placas mãe mais modernas e deve gradualmente desaparecer das 27 Conectando Hubs A maioria dos hubs possuem apenas 8 portas, alguns permitem a conexão de mais micros, mas sempre existe um limite. E se este limite não for suficiente para conectar todos os micros de sua rede? Para quebrar esta limitação, existe a possibilidade de conectar dois ou mais hubs entre sí. Quase todos os hubs possuem uma porta chamada “Up Link” que se destina justamente a esta conexão. Basta ligar as portas Up Link de ambos os hubs, usando um cabo de rede normal para que os hubs passem a se enxergar. Como para toda a regra existe uma exceção, alguns hubs mais baratos não possuem a porta Up Link, mas nem tudo está perdido, lembra-se do cabo cross-over que serve para ligar diretamente dois micros sem usar um hub? Ele também serve para conectar dois hubs. A única diferença neste caso é que ao invés de usar as portas Up Link, usaremos duas portas comuns. Note que caso você esteja interligando hubs passivos, a distância total entre dois micros da rede, incluindo o trecho entre os hubs, não poderá ser maior que 100 metros, o que é bem pouco no caso de uma rede grande. Neste caso, seria mais recomendável usar hubs ativos, que amplificam o sinal. Repetidores Caso você precise unir dois hubs que estejam muito distantes, você poderá usar um repetidor. Se você tem, por exemplo, dois hubs distantes 150 metros um do outro, um repetidor estrategicamente colocado no meio do caminho servirá para viabilizar a comunicação entre eles. Crescendo junto com a rede O recurso de conectar hubs usando a porta Up Link, ou usando cabos cross-over, é utilizável apenas em redes pequenas, pois qualquer sinal transmitido por um micro da rede será retransmitido para todos os outros. Quanto mais micros tivermos na rede, maior será o tráfego e mais lenta a rede será. Para resolver este problema, existem dois tipos de hubs especiais: os hubs empilháveis e os concentradores (também chamados de hubs de gabinete). Os hubs empilháveis são a solução mais barata; inicialmente produzidos pela 3Com, são hubs “normais” que podem ser conectados entre sí através de um barramento especial, que aparece na forma de dois conectores encontrados na parte traseira do Hub. Temos então, dois barramentos de comunicação, um entre cada hub e os micros a ele conectados, e outro barramento de comunicação entre os hubs. Caso o micro 1 conectado ao hub A, precise transmitir um dado para o micro 22 conectado ao hub C, por exemplo, o sinal irá do Hub A diretamente para o Hub C 30 Guia completo de Re - Carlos E. Morimoto http net .guiadoha usando o barramento especial, e em seguida para o micro 22, sem ser transmitido aos demais hubs e micros da rede. Os hubs empilháveis são conectados entre sí através de conectores localizados em sua parte traseira. Como um hub é conectado ao outro, você poderá ir interligando mais hubs conforme a rede for crescendo. É ss. - — + Hubs empilháveis da 3com Os concentradores por sua vez, são grandes caixas com vários slots de barramento. Da mesma maneira que conectamos placas de expansão à placa mãe do micro, conectamos placas de porta aos slots do concentrador. Cada placa de porta é na verdade um hub completo, com 8 ou 16 portas. O barramento principal serve para conectar as placas. Você pode começar com apenas algumas placas, e ir adicionando mais placas conforme necessário. Um concentrador pode trazer até 16 slots de conexão, o que permite a conexão de até 256 micros (usando placas de 16 portas). Mas se este número ainda não for suficiente, é possível interligar dois ou mais concentradores usando placas de backbone, que são conectadas ao último slot de cada concentrador, permitindo que eles sejam interligados, formando um grande concentrador. Neste último caso é possível conectar um número virtualmente ilimitado de micros. 10 ou 100? Para que a sua rede possa transmitir a 100 mbps, além de usar placas de rede Ethernet PCI de 100 mbps e cabos de par trançado categoria 5, é preciso também comprar um hub que transmita a esta velocidade. A maioria dos hubs à venda atualmente no mercado, podem funcionar tanto a 10 quanto a 100 mbps, enquanto alguns mais simples funcionam a apenas 10 mbps. No caso dos hubs 10/100 mais simples, é possível configurar a velocidade de operação através de uma chave, enquanto hubs 10/100 inteligentes frequentemente são capazes de detectar se a placa de rede da estação e o cabo são adequados para as transmissões a 100 mbps sendo a configuração automática. Bridges, Roteadores e Gateways Montar uma rede de 3 ou 4 micros é bem fácil. Mas, e se ao invés de apenas 4 PCs, forem um 31 contingente de centenas de PCs divididos em vários prédios diferentes, algumas dezenas de Macs, e de brinde, meia dúzia de velhos mainframes, todos esperando alguém (no caso você ;-) conseguir realizar o milagre de colocá-los para conversar? Em redes maiores, além de cabos e hubs, usamos mais alguns dispositivos, um pouco mais caros: bridges (pontes) e Roteadores (routers). Todos estes podem ser tanto componentes dedicados, construídos especialmente para esta função, ou PCs comuns, com duas placas de rede e o software adequado para executar a função. Bridges (pontes) Imagine que em sua empresa existam duas redes; uma rede Ethernet, e outra rede Token Ring. Veja que apesar das duas redes possuírem arquiteturas diferentes e incompatíveis entre sí, é possível instalar nos PCs de ambas um protocolo comum, como o TCP/IP por exemplo. Com todos os micros de ambas as redes falando a mesma língua, resta apenas quebrar a barreira física das arquiteturas de rede diferentes, para que todos possam se comunicar. É justamente isso que um bridge faz. E possível interligar todo o tipo de redes usando bridges, mesmo que os micros sejam de arquiteturas diferentes, Macs de um lado e PCs do outro, por exemplo, contanto que todos os micros a serem conectados utilizem um protocolo comum. Antigamente este era um dilema difícil, mas atualmente isto pode ser resolvido usando o TCP/IP, que estudaremos à fundo mais adiante. Como funcionam os Bridges? Imagine que você tenha duas redes, uma Ethernet e outra Token Ring, interligadas por um bridge. O bridge ficará entre as duas, escutando qualquer transmissão de dados que seja feita em qualquer uma das duas redes. Se um micro da rede A transmitir algo para outro micro da rede A, o bridge ao ler os endereços de fonte e destino no pacote, perceberá que o pacote se destina ao mesmo segmento da rede e simplesmente ignorará a transmissão, deixando que ela chegue ao destinatário através dos meios normais. Se, porém, um micro da rede A transmitir algo para o micro da rede B, o bridge detectará ao ler o pacote que o endereço destino pertence ao outro segmento, e encaminhará o pacote. Caso você tenha uma rede muito grande, que esteja tornando-se lenta devido ao tráfego intenso, você também pode utilizar um bridge para dividir a rede em duas, dividindo o tráfego pela metade. 32 os bridges quanto os roteadores trabalham lendo e transmitindo os pacotes, sem alterar absolutamente nada da mensagem, por isso que é necessário que todos os micros ligados a eles utilizem o mesmo protocolo. Mas, e se você precisar interligar máquinas que não suportem o mesmo protocolo: interligar PCs a um mainframe projetado para se comunicar apenas com terminais burros, por exemplo? O trabalho dos nós de interconexão é justamente este, trabalhar como tradutores, convertendo as informações de um protocolo para outro protocolo inteligível ao destinatário. Para cumprir esta tarefa são utilizáveis dois artifícios: o tunnelling e a emulação de terminal. O tunnelling é o método mais simples e por isso mais usado. Ele consiste em converter a informação para um protocolo mutuamente inteligível, que possa ser transportado através da rede, e em seguida novamente converter o pacote para o protocolo usado na rede destino. Se, por exemplo, é preciso transmitir um pacote de dados Novell IPX de uma rede de PCs para um Macintosh conectado a uma rede AppleTalk, podemos do lado da Rede Novell “envelopar” os dados usando o protocolo TPC/IP que é inteligível para ambas as redes, para que ele possa chegar ao destino, e do lado da rede AppleTalk “retirar o envelope” para obter os dados reais. A emulação de terminal já é um processo um pouco mais trabalhoso e se destina a permitir a conexão de PCs com mainframes antigos, como os ainda muito utilizados em bancos. Como os mainframes são capazes de se comunicar apenas com terminais burros e não com PCs, é preciso fazer com que o PC finja ser um terminal burro durante a conversação. O “fingimento” é feito através de um programa de emulação de terminal, instalado em cada PC usuário do mainframe. Para conectar vários PCs ligados em rede a um mainframe, é preciso instalar uma placa de interconexão em um dos PCs da rede (para poder conectá-lo fisicamente ao mainframe), esta placa contém a interface que permitirá a conexão. Este PC passará a ser o servidor do nó de interconexão. Após estabelecer a conexão da rede com o mainframe, o acesso é feito usando o programa de emulação instalado em cada PC da rede, sendo a comunicação feita através do micro que está atuando como nó de interconexão. Note que por ser realizado via software, o processo de emulação é relativamente lento, o que era um problema em micros 286 ou 386 usados antigamente, mas não nos PCs modernos, muitas vezes mais rápidos que o próprio mainframe :-). Arquiteturas de rede Como vimos no início deste capítulo, temos uma divisão entre topologias físicas de rede (a forma como os micros são interligados) e as topologias lógicas (a forma como os dados são transmitidos). Quanto à topologia física, temos topologias de barramento, onde usamos um único cabo coaxial para interligar todos os micros, e topologias de estrela, onde usamos cabos de par trançado e um hub. As redes com topologia de estrela são as mais usadas atualmente, pois nelas a solução de 35 problemas é muito mais simples. Se uma estação não funciona, temos o problema isolado à própria estação. Basta então verificar se a estação está corretamente configurada e se a placa de rede está funcionando, se o cabo que liga o micro ao hub está intacto, não existe mau contato e se a porta do hub à qual o micro está conectado está funcionando. As únicas vantagens da topologia de barramento físico residem no custo, já que geralmente usamos menos cabo para interligar os micros e não precisamos de um hub. As desvantagens por sua vez são muitas: como um único cabo interliga todos os micros, uma única estação com problemas será capaz de derrubar toda a rede. A solução de problemas também é mais difícil, pois você terá que examinar micro por micro até descobrir qual está derrubando a rede. A possibilidade de mau contato nos cabos também é maior, e novamente, um único encaixe com mau contato pode derrubar toda a rede (e lá vai você novamente checando micro por micro...). Finalmente, usando cabo coaxial, sua rede ficará limitada a 10 mbps, enquanto usando cabos de par trançado categoria 5 numa topologia de estrela, podemos chegar a 100 mbps. Por causa destas desvantagens, a topologia de barramento pode ser utilizável em redes de no máximo 5 ou 10 micros, acima disto você deve considerar apenas a topologia de estrela. Caso você não se importe de gastar alguns reais a mais num hub, é aconselhável já começar logo com uma rede com cabos de par trançado, que lhe dará menos dor de cabeça mais tarde. Citei no início a topologia física de anel, onde um único cabo interligaria todos os micros e voltaria ao primeiro formando um anel. Esta topologia porém é apenas uma teoria, já que o cabeamento seria muito mais difícil e não teríamos vantagens sobre a redes em barramento e estrela. Topologias Lógicas A topologia lógica da rede, determina como os dados são transmitidos através da rede. Não existe necessariamente uma ligação entre a topologia física e lógica; podemos ter uma estrela física e um barramento lógico, por exemplo. Existem três topologias lógicas de rede: Ethernet, Token Ring e Arcnet. Como a topologia lógica determina diretamente o modo de funcionamento da placa de rede, esta será específica para um tipo de rede. Não é possível usar placas Token Ring em Redes Ethernet, ou placas Ethernet em Redes Arcnet, por exemplo. Redes Ethernet As placas de rede Ethernet são de longe as mais utilizadas atualmente, sobretudo em redes pequenas e médias e provavelmente a única arquitetura de rede com a qual você irá trabalhar. Numa rede Ethernet, temos uma topologia lógica de barramento. Isto significa que quando uma estação precisar transmitir dados, ela irradiará o sinal para toda a rede. Todas as demais estações ouvirão a transmissão, mas apenas a placa de rede que tiver o endereço indicado no pacote de dados receberá os dados. As demais estações simplesmente ignorarão a transmissão. Mais uma vez vale lembrar que apesar de utilizar uma topologia lógica de barramento, as redes Ethernet podem utilizar topologias físicas de estrela ou de barramento. 36 Guia completo de Re: Carlos E. Morimoto http guiadohard Dados para a estação 4! Hump, não e pra mim. Hump, não é pra mim... Dados recebidos! + + + Como apenas uma estação pode falar de cada vez, antes de transmitir dados a estação irá “ouvir” o cabo. Se perceber que nenhuma estação está transmitindo, enviará seu pacote, caso contrário, esperará até que o cabo esteja livre. Este processo é chamado de “Carrier Sense” ou sensor mensageiro. O cabo está livre, wou transenitir Nada a transmitir... Nada a transmitir... Nada a transmitir... Mas, caso duas estações ouçam o cabo ao mesmo tempo, ambas perceberão que o cabo está livre e acabarão enviando seus pacotes ao mesmo tempo. Teremos então uma colisão de dados. Dois pacotes sendo enviados ao mesmo tempo geram um sinal elétrico mais forte, que pode ser facilmente percebido pelas placas de rede. A primeira estação que perceber esta colisão irradiará para toda a rede um sinal especial de alta frequência que cancelará todos os outros sinais que estejam trafegando através do cabo e alertará as demais placas que ocorreu uma colisão. Dados para a estação 3 Parem todos, houve uma colisão! Mada a transmitir. Dados para a estação 1 Sendo avisadas de que a colisão ocorreu, as duas placas “faladoras” esperarão um número aleatório de milessegundos antes de tentarem transmitir novamente. Este processo é chamado de TBEB “truncated exponencial backof”. Inicialmente as placas escolherão entre 1 ou 2, se houver 37 Propriedades de Co Geral | Compartilhamento | Propriedades de Realtek RTL9139(A) PCI Fast Ethernet Adap | x] E Geral | fivançado | Driver | Recursos | Gerenciamento de energia | 2 x] &s propriedades a seguir estão disponíveis para o adaptador de rede. Clique na propriedade que deseja alterar à esquerda & D: selecione o seu valor à disita À Propriedade: Walor k Modo automático =] 10 modo fulkduplex 10 modo semi-duplex 100 modo semi-duples Modo automático Mas, existe uma pequena regra para ativar o full duplex. Numa rede de 10 megabits 10Base-T ou de 100 megabits 100Base-TX, os dois padrões mais comuns, você só pode usar o modo full duplex se estiver usando um cabo cross over, apenas entre dois micros, ou então se estiver usando um switch. As duas arquiteturas utilizam apenas dois pares dos 4 do cabo de par trançado. Um par transmite dados e o outro transmite as notificações de colisões de pacotes. No full duplex são utilizados os dois pares, um para enviar e outro para receber, por isso não existe mais a detecção de colisão de pacotes. Se você ativar o full duplex com mais de 2 PCs por segmento de rede (usando um hub) o desempenho da rede vai diminuir ao invés de aumentar, pois o número de colisões de pacotes vai aumentar muito e as placas serão obrigadas a fazer muitas retransmissões. Mas, não existe um ganho de desempenho muito grande ao usar o full duplex ao invés do half- duplex (ou semi-duplex), pois só haverá ganho quando as duas estações precisarem transmitir grandes quantidades de dados aos mesmo tempo. O cenário mais comum é uma das estações 40 transmitindo dados e a outra apenas confirmando o recebimento dos pacotes, onde o modo full- duplex não faz diferença. As placas 10Base-2, as antigas, que utilizam cabo coaxial, não suportam full duplex. Isso é uma exclusividade das placas que utilizam par trançado ou fibra óptica. As redes gigabit-over-cooper, que também utilizam cabos de par trançado suportam um modo full duplex, que também pode ser ativado apenas ao ligar diretamente dois PCs ou utilizar um switch. Tecnologias antigas de rede As redes Token Ring e mesmo as Arcnet já tiveram seus dias de glória, mas acabaram caindo em desuso com a popularização das redes Ethernet. Ainda é possível encontrar algumas redes Token Ring, sobretudo em grandes empresas e ainda é possível comprar placas e hubs, mas estamos vendo uma curva descendente, onde não são montadas novas redes e as antigas são apenas reparadas, não expandidas. São as Brasílias e Fuscas entre as redes. Redes Token Ring Diferentemente das redes Ethernet que usam uma topologia lógica de barramento, as redes Token Ring utilizam uma topologia lógica de anel. Quanto à topologia física, é utilizado um sistema de estrela parecido com o 10BaseT, onde temos hubs inteligentes com 8 portas cada ligados entre sí. Tanto os hubs quanto as placas de rede e até mesmo os conectores dos cabos têm que ser próprios para redes Token Ring. Existem alguns hubs combo, que podem ser utilizados tanto em redes Token Ring quanto em redes Ethernet. O custo de montar uma rede Token Ring é muito maior que o de uma rede Ethernet, e sua velocidade de transmissão está limitada a 16 mbps, contra os 100 mbps permitidos pelas redes Ethernet. Porém, as redes Token Ring trazem algumas vantagens sobre sua concorrente: a topologia lógica em anel é quase imune a colisões de pacote, e pelas redes Token Ring obrigatoriamente utilizarem hubs inteligentes, o diagnóstico e solução de problemas é mais simples. Devido a estas vantagens, as redes Token Ring ainda são razoavelmente utilizadas em redes de médio a grande porte. Contudo, não é recomendável pensar em montar uma rede Token Ring para seu escritório, pois os hubs são muito caros e a velocidade de transmissão em pequenas redes é bem mais baixa que nas redes Ethernet. Como disse, as redes Token Ring utilizam uma topologia lógica de anel. Apesar de estarem fisicamente conectadas a um hub, as estações agem como se estivessem num grande anel. Disse anteriormente que as redes Token Ring são praticamente imunes a colisões, curioso em saber como este sistema funciona? Se você tem uma grande quantidade de pessoas querendo falar (numa reunião por exemplo), como fazer para que apenas uma fale de cada vez? Uma solução seria usar um bastão de falar: quem estivesse com o bastão (e somente ele) poderia falar por um tempo determinado, ao final do qual deveria passar o bastão para outro que quisesse falar e esperar até que o bastão volte, 41 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net caso queira falar mais. É justamente este o sistema usado em redes Token Ring. Um pacote especial, chamado pacote de Token circula pela rede, sendo transmitido de estação para estação. Quando uma estação precisa transmitir dados, ela espera até que o pacote de Token chegue e, em seguida, começa a transmitir seus dados. A transmissão de dados em redes Token também é diferente. Ao invés de serem irradiados para toda a rede, os pacotes são transmitidos de estação para estação (daí a topologia lógica de anel). A primeira estação transmite para a segunda, que transmite para a terceira, etc. Quando os dados chegam à estação de destino, ela faz uma cópia dos dados para sí, porém, continua a transmissão dos dados. A estação emissora continuará enviando pacotes, até que o primeiro pacote enviado dê uma volta completa no anel lógico e volte para ela. Quando isto acontece, a estação pára de transmitir e envia o pacote de Token, voltando a transmitir apenas quando receber novamente o Token. Dados para a estação al Não é pra mim, vou Opa, dados pra mim! You apenas retransmitir fazer uma cópia e retransmitir Não é pra L——— mim, vou apenas retransmitir 2 42 Guia completo de Re: Carlos E. Morimoto http are.net guiadohard Existem muitos casos de fabricantes que optaram por produzir apenas placas PC-Card (presumindo que a maior parte das vendas seria feita para usuários de notebooks) e que oferecem como complemento um adaptador opcional que pode ser usado para encaixar os cartões em micros de mesa. Lembre-se que o padrão PC-Card dos notebooks e o barramento PCI dos desktops são muito semelhantes, por isso basta um adaptador simples. O Hub é chamado de ponto de acesso e tem a mesma função que desempenha nas redes Ethernet: retransmitir os pacotes de dados, de forma que todos os micros da rede os recebam. Placa de rede 802.11b Ponto de acesso Não existe limite no número de estações que podem ser conectadas a cada ponto de acesso mas, assim como nas redes Ethernet, a velocidade da rede decai conforme aumenta o número de estações, já que apenas uma pode transmitir de cada vez. A maior arma do 802.11b contra as redes cabeadas é a versatilidade. O simples fato de poder interligar os PCs sem precisar passar cabos pelas paredes já é o suficiente para convencer algumas pessoas, mas existem mais alguns recursos interessantes que podem ser explorados. Sem dúvidas, a possibilidade mais interessante é a mobilidade para os portáteis. Tanto os notebooks quanto handhelds e as futuras webpads podem ser movidos livremente dentro da área coberta pelos pontos de acesso sem que seja perdido o acesso à rede. Esta possibilidade lhe dará alguma mobilidade dentro de casa para levar o notebook para onde quiser, sem perder o acesso à Web, mas é ainda mais interessante para empresas e escolas. No caso das empresas a rede permitiria que os funcionários pudessem se deslocar pela empresa sem perder a conectividade com a rede e bastaria entrar pela porta para que o notebook 45 automaticamente se conectasse à rede e sincronizasse os dados necessários. No caso das escolas a principal utilidade seria fornecer acesso à Web aos alunos. Esta já é uma realidade em algumas universidades e pode tornar-se algo muito comum dentro dos próximos anos. Vamos então às especificações e aos recursos desta arquitetura. A velocidade das redes 802.11b é de 11 megabits, comparável à das redes Ethernet de 10 megabits, mas muito atrás da velocidade das redes de 100 megabits. Estes 11 megabits não são adequados para redes com um tráfego muito pesado, mas são mais do que suficientes para compartilhar o acesso à web, trocar pequenos arquivos, jogar games multiplayer, etc. Note que os 11 megabits são a taxa bruta de transmissão de dados, que incluem modulação, códigos de correção de erro, retransmissões de pacotes, etc., como em outras arquiteturas de rede. A velocidade real de conexão fica em torno de 6 megabits, o suficiente para transmitir arquivos a 750 KB/s, uma velocidade real semelhante à das redes Ethernet de 10 megabits. Mas, existe a possibilidade de combinar o melhor dos dois mundos, conectando um ponto de acesso 802.11b a uma rede Ethernet já existente. No ponto de acesso da foto acima você pode notar que existe um conector RJ-45: Isto adiciona uma grande versatilidade à rede e permite diminuir os custos. Você pode interligar os PCs através de cabos de par trançado e placas Ethernet que são baratos e usar as placas 802.11b apenas nos notebooks e aparelhos onde for necessário ter mobilidade. Não existe mistério aqui, basta conectar o ponto de acesso ao Hub usando um cabo de par trançado comum para interligar as duas redes. O próprio Hub 802.11b passará a trabalhar como um switch, gerenciando o tráfego entre as duas redes. O alcance do sinal varia entre 15 e 100 metros, dependendo da quantidade de obstáculos entre o ponto de acesso e cada uma das placas. Paredes, portas e até mesmo pessoas atrapalham a propagação do sinal. Numa construção com muitas paredes, ou paredes muito grossas, o alcance pode se aproximar dos 15 metros mínimos, enquanto num ambiente aberto, como o pátio de uma escola o alcance vai se aproximar dos 100 metros máximos. Se você colocar o ponto de acesso próximo da janela da frente da sua casa por exemplo, provavelmente um vizinho distante dois quarteirões ainda vai conseguir se conectar à sua rede. Você pode utilizar o utilitário que acompanha a placa de rede para verificar a qualidade do sinal em cada parte do ambiente onde a rede deverá estar disponível. O utilitário lhe fornecerá um gráfico com a potência e a qualidade do sinal, como abaixo: 46 Link Qualiyr — Good (80%) Signal Strength: Good [66%] A potência do sinal decai conforme aumenta a distância, enquanto a qualidade decai pela combinação do aumento da distância e dos obstáculos pelo caminho. E por isso que num campo aberto o alcance será muito maior do que dentro de um prédio por exemplo. Conforme a potência e qualidade do sinal se degrada, o ponto de acesso pode diminuir a velocidade de transmissão a fim de melhorar a confiabilidade da transmissão. A velocidade pode cair para 5.5 megabits, 2 megabits ou chegar a apenas 1 megabit por segundo antes do sinal se perder completamente. Algumas placas e pontos de acesso são capazes de negociar velocidades ainda mais baixas, possibilitando a conexão a distâncias ainda maiores. Nestes casos extremos o acesso à rede pode se parecer mais com uma conexão via modem do que via rede local. As redes sem fio, sejam baseadas no 802.11b ou em qualquer outro padrão, apresentam um grande potencial para o futuro. Uma mudança mais interessante que eu vejo é o estabelecimento de pontos de acesso à Web em lojas, supermercados, shoppings, restaurantes, escolas, etc. onde o acesso à Web será oferecido como conveniência aos clientes armados com notebooks e palmtops, que dentro dos próximos anos se tornarão muito mais populares e já virão com interfaces de rede sem fio. Será uma forma de acesso muito mais barata (e mais rápida) que a através dos celulares 2.5G ou mesmo 3G e ao mesmo tempo será algo muito barato de implantar para os comerciantes que já tiverem um PC com acesso à Web. Já que na maior parte do tempo em que não estamos em casa ou no trabalho estamos em algum destes lugares, estas pequenas redes públicas diminuirão muito a necessidade de usar o acesso via celular, que mesmo com o 2.5G continuará sendo caro, já que não haverá mais cobrança por minuto, mas em compensação haverá tarifação pela quantidade de dados transferidos. Será uma grande conveniência, já que você poderá acessar a Web em praticamente qualquer lugar. O velho sonho de muitos educadores de escolas onde cada aluno tem um computador conectado à rede da escola também poderá tornar-se realidade mais facilmente. O alcance de 15 a 100 metros do 802.11b é mais do que suficiente para uma loja, escritório ou restaurante. No caso de locais maiores, bastaria combinar vários pontos de acesso para cobrir toda a área. Estes pontos podem ser configurados para automaticamente dar acesso a todos os aparelhos dentro da área de cobertura. Neste caso não haveria maiores preocupações quanto à segurança, já que estará sendo compartilhado apenas acesso à web. Segurança A maior dúvida sobre o uso de redes sem fio recai sobre o fator segurança. Com um transmissor irradiando os dados transmitidos através da rede em todas as direções, como impedir que qualquer um possa se conectar a ela e roubar seus dados? Como disse acima, um ponto de acesso instalado próximo à janela da sala provavelmente permitirá que um vizinho a dois quarteirões da sua casa consiga captar O sinal da sua rede, uma preocupação agravada pela popularidade que as 47 quais modelos suportam o padrão e selecionar suas placas e pontos de acesso dentro desse círculo restrito. Os componentes geralmente serão um pouco mais caro, já que você estará pagando também pela camada extra de encriptação. Permissões de acesso Além da encriptação você pode considerar implantar também um sistema de segurança baseado em permissões de acesso. O Windows 95/98/ME permite colocar senhas nos compartilhamentos, enquanto o Windows NT, 2000 Server ou ainda o Linux, via Samba, já permitem uma segurança mais refinada, baseada em permissões de acesso por endereço IP, por usuário, por grupo, etc. Usando estes recursos, mesmo que alguém consiga penetrar na sua rede, ainda terá que quebrar a segurança do sistema operacional para conseguir chegar aos seus arquivos. Isso vale não apenas para redes sem fio, mas também para redes cabeadas, onde qualquer um que tenha acesso a um dos cabos ou a um PC conectado à rede é um invasor em potencial. Alguns pontos de acesso oferecem a possibilidade de estabelecer uma lista com as placas que têm permissão para utilizar a rede e rejeitar qualquer tentativa de conexão de placas não autorizadas. O controle é feito através dos endereços MAC das placas, que precisam ser incluídos um a um na lista de permissões, através do utilitário do ponto de acesso. Muitos oferecem ainda a possibilidade de estabelecer senhas de acesso. Somando o uso de todos os recursos acima, a rede sem fio pode tornar-se até mais segura do que uma rede cabeada, embora implantar tantas camadas de proteção torne a implantação da rede muito mais trabalhosa. Como so dados são transmitidos e interferência As redes 802.11b transmitem sinais de rádio na faixa dos 2.4 GHz utilizando um modo de transmissão chamado Direct Sequence Spread Spectrum, onde o transmissor escolhe uma frequência onde não existam outras transmissões e se mantém nela durante o período de operação, a menos que o nível de interferência atinja um ponto crítico. Neste caso os transmissores procurarão outra frequência disponível. O padrão 802.11b utiliza frequências entre 2.4 e 2.48 GHz, com um total de 11 canais disponíveis (2.412, 2.417, 2.422, 2.427, 2.432, 2.437, 2.442, 2.447, 2.452, 2.457 e 2.462 GHz). Os transmissores podem utilizar qualquer uma das faixas em busca da banda mais limpa, o que já garante alguma flexibilidade contra interferências. Apesar disso, as redes 802.11b possuem pelo menos quatro inimigos importantes: os transmissores bluetooth, telefones sem fio que operam na faixa dos 2.4 GHz, aparelhos de microondas e outros pontos de acesso 802.11b próximos. Em nenhum dos quatro casos existe o risco da rede chegar a sair fora do ar (mesmo em casos extremos), mas existe a possibilidade de haver uma degradação de desempenho considerável. O Bluetooth costuma ser o mais temido, pois também é um padrão de redes sem fio e também opera na faixa dos 2.4 GHz. Mas, na prática, o Bluetooth é o menos perigoso dos quatro, pois 50 utiliza um modo de transmissão diferente do 802.11b, chamado Frequency Hop Spread Spectrum, onde os transmissores mudam constantemente de frequência, dentro do conjunto de 79 canais permitido pelo padrão. Esta é uma forma de evitar interferência com outros transmissores Bluetooth próximos, já que a sequência é conhecida apenas pelos dispositivos envolvidos e, em consequência, também evita uma interferência direta com transmissores 802.11b. Na prática, os transmissores Bluetooth podem causar uma pequena perda de desempenho nos momentos em que tentarem transmitir na mesma frequência dos transmissores 802.11b. Mas, como o chaveamento é muito rápido, isto só chega a ser um problema nas transmissões de vídeo ou outros tipos de mídia via streaming, onde qualquer pequena pausa já atrapalha a visualização. Os modelos de telefone sem fio que operam na faixa dos 2.4 GHz são um pouco mais perigosos, já que ao contrário do bluetooth operam a uma frequência fixa. Neste caso o telefone pode invadir a frequência utilizada pela rede, prejudicando a velocidade de transmissão enquanto estiver sendo usado. Os aparelhos de microondas também utilizam ondas de rádio nesta mesma faixa de frequência e por isso também podem atrapalhar, embora apenas caso fiquem muito próximos dos transmissores. Caso o microondas fique a pelo menos 6 metros, não haverá maiores problemas. Finalmente, chegamos ao problema final. O que acontece caso todos os seus vizinhos resolvam utilizar redes 802.11b, ou caso você precise utilizar vários pontos de acesso na mesma rede? Como disse acima, os dispositivos de cada rede podem utilizar qualquer um dos 11 canais permitidos pelo padrão. Mas existe um porém: dos 11, apenas 3 canais podem ser utilizados simultâneamente, pois os transmissores precisam de uma faixa de 22 MHz para operar. Se existirem até 3 transmissores na mesma área, não haverá problemas, pois cada um poderá utilizar um canal diferente. Com 4 ou mais pontos de acesso você terá perda de desempenho sempre que dois tentarem transmitir dados simultâneamente. Na prática, o cenário é parecido com o que temos numa rede Ethernet. Como o Hub encaminha todos os pacotes para todas as estações, apenas uma estação pode transmitir de cada vez. Sempre que duas estações tentam transmitir aa mesmo tempo, temos uma colisão de pacotes e a rede fica paralisada por alguns milessegundos, até que as estações possam voltar a retransmitir, uma de cada vez. No 802.11b temos um cenário parecido. Com vários pontos de acesso operando no mesmo canal, as transmissões precisam ser feitas de forma alternada. Na melhor das hipóteses, você não terá 11 megabits para cada um, mas 11 megabits para todos. Naturalmente isso só se aplica nos momentos em que ambos transmitirem ao mesmo tempo. Mais uma curiosidade é que é possível aproveitar os três canais simultâneos para utilizar dois ou três pontos de acesso no mesmo local, como uma forma de aumentar a performance da rede (no caso de redes muito movimentadas, com muitas estações), dividindo os usuários entre os pontos de acesso disponíveis. Existem alguns casos de pontos de acesso que trabalham simultâneamente nas três frequências, como se fosse três pontos de acesso distintos. 51 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Aumentando o alcance Assim como em outras tecnologias de transmissão via rádio, a distância que o sinal é capaz de percorrer depende também da qualidade da antena usada. As antenas padrão utilizadas nos pontos de acesso, geralmente de 2 dBi são pequenas e práticas, além de relativamente baratas, mas existe a opção de utilizar antenas mais sofisticadas para aumentar o alcance da rede. Ponto de acesso com as antenas padrão. Alguns fabricantes chegam a dizer que o alcance dos seus pontos de acesso chega a 300 metros, usando as pequenas antenas padrão. Isto está um pouco longe da realidade, pois só pode ser obtido em campos abertos, livres de qualquer obstáculo e mesmo assim o sinal ficaria tão fraco que a velocidade de transmissão mal chegaria a 1 megabit. Mesmo assim, a distância máxima e a qualidade do sinal (e consequentemente a velocidade de transmissão) pode variar bastante de um modelo de ponto de acesso para outro, de acordo com a qualidade do transmissor e da antena usada pelo fabricante. Existem basicamente três tipos de antenas que podem ser utilizadas para aumentar o alcance da rede. As antenas Yagi, são as que oferecem um maior alcance, mas em compensação são capazes de cobrir apenas a área para onde são apontadas. Estas antenas são mais úteis para cobrir alguma área específica, longe do ponto de acesso, ou então para um usuário em trânsito, que precisa se conectar à rede. Em ambos os casos, o alcance utilizando uma antena Yagi pode passar dos 500 metros. Antena Yagi A segunda opção são as antenas ominidirecionais, que, assim como as antenas padrão dos pontos de acesso, cobrem uma área circular (ou esférica, caso o ponto de acesso esteja instalado acima do solo) em torno da antena. A vantagem é a possibilidade de utilizar uma antena com uma maior potência. Existem modelos de antenas ominidirecionais de 3dbi, 5 dBi, 10 dBi ou até mesmo 15 dBi, um grande avanço sobre as antenas de 2 dBi que acompanham a maioria dos pontos de 52 Mas, não existe garantia que o 802.11b seja mesmo o padrão definitivo. O maior concorrente é o 802.11a, que é menos susceptível a interferências é mais rápido. IEEE 802.11a O 802.11b utiliza a frequência de 2.4 GHz, a mesma utilizada por outros padrões de rede sem fio e pelos microondas, todos potenciais causadores de interferência. O 802.11a por sua vez utiliza a frequência de 5 GHz, onde a interferência não é problema. Graças à frequência mais alta, o padrão também é quase cinco vezes mais rápido, atingindo respeitáveis 54 megabits. Note que esta é a velocidade de transmissão “bruta” que inclui todos os sinais de modulação, cabeçalhos de pacotes, correção de erros, etc. a velocidade real das redes 802.11a é de 24 a 27 megabits por segundo, pouco mais de 4 vezes mais rápido que no 802.11b. Outra vantagem é que o 802.11a permite um total de 8 canais simultâneos, contra apenas 3 canais no 802.11b. Isso permite que mais pontos de acesso sejam utilizados no mesmo ambiente, sem que haja perda de desempenho. O grande problema é que o padrão também é mais caro, por isso a primeira leva de produtos vai ser destinada ao mercado corporativo, onde existe mais dinheiro e mais necessidade de redes mais rápidas. Além disso, por utilizarem uma frequência mais alta, os transmissores 8021.11a também possuem um alcance mais curto, teoricamente metade do alcance dos transmissores 802.11b, o que torna necessário usar mais pontos de acesso para cobrir a mesma área, o que contribui para aumentar ainda mais os custos. A diferença de custo vai se manter por um ou dois anos. É de se esperar então que as redes de 11 megabits continuem se popularizando no mercado doméstico, enquanto as de 54 megabits ganhem terreno no mercado corporativo, até que um dia o preço dos dois padrões se nivele e tenhamos uma transição semelhante à das redes Ethernet de 10 para 100 megabits. Ao contrário do que o nome sugere, o 802.11a é um padrão mais recente do que o 802.11b. Na verdade, os dois padrões foram propostos pelo IEEE na mesma época, mas o 802.11b foi finalizado antes e por isso chegou ao mercado com mais de 6 meses de antecedência. Os primeiros periféricos 802.11a foram lançados em Novembro de 2001. IEEE 802.119 Este é um padrão recentemente aprovado pelo IEEE, que é capaz de transmitir dados a 54 megabits, assim como o 802.11a. A principal novidade é que este padrão utiliza a mesma faixa de frequência do 802.11b atual: 2.4 GHz. Isso permite que os dois padrões sejam intercompatíveis. A idéia é que você possa montar uma rede 802.11b agora e mais pra frente adicionar placas e pontos de acesso 802.119, 55 mantendo os componentes antigos, assim como hoje em dia temos liberdade para adicionar placas e hubs de 100 megabits a uma rede já existente de 10 megabits. A velocidade de transferência nas redes mistas pode ou ser de 54 megabits ao serem feitas transferências entre pontos 802.11g e de 11 megabits quando um dos pontos 801.11b estiver envolvido, ou então ser de 11 megabits em toda a rede, dependendo dos componentes que forem utilizados. Esta é uma grande vantagem sobre o 802.11a, que também transmite a 54 megabits, mas é incompatível com os outros dois padrões. Os primeiros produtos baseados no 802.119 devem chegar ao mercado apartir do final de 2002, um ano depois da primeira leva do 802.11a, que é o concorrente direto. Isso significa que a popularidade do 802.11g será determinada pelo sucesso do concorrente. Se o 802.11a for rapidamente adotado e chegar a substituir o 802.11b até lá, os periféricos 802.11g terão pouca chance e talvez nem cheguem a ser lançados, já que seria uma guerra perdida. Se por outro lado a maioria dos usuários preferir os dispositivos 802.11b, então o 802.119 terá chances de dominar o mercado. Home PNA Este é um padrão para transmissão de dados através de cabos telefônicos comuns a curtas distâncias. A idéia é que os usuários interessados em montar uma rede doméstica mas que não tenham como passar cabos de rede pela casa, possam aproveitar as extensões telefônicas já existentes para ligar seus micros em rede. Existem duas versões deste padrão: a versão 1.0, já obsoleta, transmite a apenas 1 mbps, muito pouco se comparado às redes Ethernet, enquanto a versão 2.0 já transmite a 10 mbps, uma velocidade próxima à das redes 802.11b. Os dispositivos Home PNA utilizam uma arquitetura de rede ponto a ponto, sem a necessidade de usar nenhum tipo de hub ou concentrador e os sinais não interferem com as ligações de voz, nem com os serviços de acesso via ADSL, já que ambos utilizam frequências diferentes. A distância máxima entre os pontos é de 330 metros e é possível utilizar montar redes de até 50 PCs. E possível conectar mais PCs caso necessário, mais quanto maior o número de PCs, maior o número de colisões de pacotes e pior o desempenho. O uso do Home PNA só é viável caso você já possua extensões telefônicas para todos os PCs, caso contrário, fio por fio seria mais vantajoso usar as velhas redes Ethernet, que são mais rápidas e mais baratas. Em termos de custo, temos uma faixa intermediária entre as redes Ethernet e as redes Wireless. Nos EUA cada placa PCI custa de 40 a 60 dólares, dependendo do modelo, menos da metade do preço das placas 802.11b, mas ainda um pouco salgado. Aqui no Brasil estes produtos ainda não são muito comuns, mas os preços não são muito mais altos que isto. Além dos PCI, existem também alguns modelos USB, que são um pouco mais caros. Como esta é uma tecnologia destinada a usuário domésticos, o mais comum é os fabricantes oferecerem os produtos na forma de kits, com duas placas de rede, ao invés de vendê-los de forma unitária: 56 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Da ia oa Kit com placas Home PNA Fora a praticidade de poder utilizar as extensões telefônicas, as redes Home PNA não oferecem vantagens sobre as redes Ethernet e por isso não são difundidas quanto as redes sem fio. Apesar disso, as placas são relativamente baratas, o que deve garantir a sobrevivência do padrão pelo menos até que as redes sem fio tornem-se mais acessíveis. Caso você se decida por este padrão, não deixe de prestar atenção se está comprando placas de 1 ou de 10 megabits. Apesar de não serem mais produzidas, ainda existe oferta de placas de 1 megabit, que são suficientes apenas para compartilhar a conexão com a Internet e transferir pequenos arquivos, caso você não tenha pressa. E possível misturar placas de 1 e 10 megabits na mesma rede mas, neste caso, as placas de 10 megabits passarão a trabalhar a apenas 1 megabit para manter compatibilidade com as placas mais lentas. HomePlug Powerline Este é mais uma tecnologia que segue a idéia de utilizar os cabos que já temos em casa ao invés de instalar mais cabos para a rede. Mas, enquanto o HomePNA permite usar as extensões telefônicas, o HomePlug permite utilizar a própria fiação elétrica da casa, algo ainda mais prático. Apesar dos cabos elétricos não serem exatamente um meio adequado para a transmissão de dados, o HomePlug permite velocidades mais altas que o 802.11b e o HomePNA, 20 megabits no total ou 14 megabits reais, descontando o protocolo de correção de erros utilizado para garantir a confiabilidade das transmissões através de um meio tão hostil quanto os cabos elétricos. Descontando todas as perdas com as várias camadas de modulação e protocolos, temos velocidades de transmissão de dados de 8 a 9 megabits, uma marca respeitável, que supera por uma boa margem os 7 megabits reais das redes Ethernet de 10 megabits. 57 Guia completo de Re - Carlos E. Morimoto http net .guiadoha com o IEEE 802.11b, que é capaz de manter taxas de transferência de 11 megabits e é capaz de cobrir distâncias maiores, sem falar nos dois sucessores, o 802.11a eo 802.119 O 802.11b pode ser utilizado para conectar PCs, notebooks e também outros dispositivos de médio porte. O problema fica por conta dos Handhelds, celulares e outros aparelhos pequenos, alimentados por baterias. Os transmissores 802.11b trabalham com um sinal bastante intenso e por isso também consomem muita energia. O Bluetooth perde feio para o trio em termos de velocidade, pois o padrão é capaz de transmitir a apenas 1 megabit, isto em teoria, já que a velocidade prática cai para apenas 700 Kbits graças aos sinais de controle e modulação. Em compensação, o Bluetooth é uma tecnologia mais barata que o 802.11b. Atualmente os transmissores já custam, para os fabricantes, cerca de 20 dólares por unidade, um quinto do preço de uma placa de rede 802.11b. Outra diferença é que os transmissores bluetooth trabalham com uma potência mais baixa e são menores. Isso permite que eles consumam menos energia, permitindo que sejam usados também em pequenos aparelhos. Os transmissores são bastante compactos, o da foto abaixo por exemplo têm o comprimento de um palito de fósforos. Atualmente existem transmissores ainda menores, com menos de 1 centímetro quadrado. Transmissor Bluetooth Com estes dados ja dá para entender por que os fabricantes não estão mais citando o uso do bluetooth em redes sem fio, simplesmente o padrão não tem condições de competir neste segmento. A idéia agora é usar as redes Ethernet ou o 802.11b para ligar os PCs e notebooks em rede e o bluetooth como um complemento para conectar periféricos menores, como Handhelds, celulares, e até mesmo periféricos de uso pessoal, como teclados, mouses, fones de ouvido, etc. O Bluetooth serviria então como uma opção às interfaces USB, seriais e paralelas para a conexão de periféricos. De fato, a velocidade permitida pelo Bluetooth é bem mais baixa que a das interfaces USB, estamos falando de 12 megabits contra apenas 1 megabit. Mais um dado interessante é que a Intel vem tentando incentivar os fabricantes a abandonar o uso das interfaces seriais, paralelas, PS/2 e até mesmo do bom e velho drive de disquetes, substituindo todos estes periféricos por similares USB ou bluetooth. Esta mudança poderia finalmente possibilitar a adoção em massa do bluetooth, o que de certa forma seria bem vindo já que seria um meio muito mais simples de sincronizar dados com o palm, transferir as fotos da câmera digital, etc. não seria mais preciso instalar cabos, apenas deixar o periférico próximo do PC. Mas, para isso ainda faltam resolver dois problemas. Em primeiro lugar, falta a padronização definitiva do Bluetooth. O padrão 1.0 possuía vários so problemas o que levou os fabricantes a trabalharem no padrão 1.1, que promete ser o definitivo. O padrão 1.1 foi estabelecido recentemente e não oferece compatibilidade com periféricos do padrão antigo. Para complicar, não existe a certeza de que não haverão novas mudanças no padrão. Além disso, existe o problema do preço. Atualmente os transmissores bluetooth ainda custam na casa dos 20 dólares. Segundo os fabricantes, seria necessário que o valor caísse para algo próximo de 5 dólares por transmissor para que fosse viável incluir transmissores bluetooth em todos os periféricos. O valor vai continuar caindo conforme a tecnologia avança, mas pode demorar mais dois anos até que chegue até este patamar. Usos para o Bluetooth Esta é a parte futurista deste tópico. Imagine que aplicações poderão surgir ao combinarmos a natural miniaturização dos componentes e a possibilidade de conectá-los sem fios uns aos outros. Cada aparelho têm uma certa função, mas ao interligá-los novas utilidades podem surgir, da mesma forma que novas idéias surgem quando várias pessoas trabalham em conjunto. O celular permite realizar chamadas de voz e acessar a Internet. Mas, sua funcionalidade não é perfeita. Para atender uma chamada é necessário tirá-lo do bolso e o acesso à Web é extremamente limitado, graças ao pequeno tamanho da tela e da pequena capacidade de processamento do aparelho. Um Palm (ou outro Handheld qualquer) tem bem mais recursos que o celular, mas ao mesmo tempo não tem acesso à Web. Existem alguns aparelhos que tentam juntar as duas coisas, o que acaba resultando num celular bem maior que o habitual que traz um Palm embutido. Mas, caso os dois aparelhos viessem equipados com transmissores bluetooth seria possível acessar a Web através do Palm, com muito mais recursos que no celular, utilizando sem precisar tirar o celular do bolso. Como apartir dos próximos meses teremos celulares 2.5G (e no futuro os 3G) que ficarão continuamente conectados à Web, a parceria seria muito bem vinda. Imaginando que este Palm do futuro tivesse memória suficiente, ele poderia ser usado também para gravar as chamadas de voz, servir como secretária eletrônica e outros recursos semelhantes. Podemos agora adicionar um terceiro dispositivo, um fone de ouvido. Este fone, estaria ligado tanto ao celular quando ao Palm. Existem transmissores bluetooth pequenos o suficientes para serem usados num fone de ouvido sem fio. Já existem até alguns produtos, como o da foto: 61 Fone de ouvido Bluetooth Este fone de ouvido com microfone permitiria adicionar mais recursos aos outros dois aparelhos. Seria possível tanto ouvir músicas em MP3 e gravar notas de voz através da conexão com o Palm, quanto usá-lo para atender as chamadas no celular. E possível imaginar mais funções, como por exemplo acessar dados na agenda de compromissos do Palm através de comandos de voz. Seria estranho sair falando sozinho no meio da rua, mas é mais uma possibilidade, enfim. Temos aqui o que pode ser chamada de PAN ou Personal Area Network, uma rede pessoal, entre os dispositivos que carrega nos bolsos. Ao chegar em casa, o Palm automaticamente formaria uma rede com o PC. Isso permitiria configurá-lo para automaticamente fazer o sincronismo periodicamente, sem a necessidade do velho ritual de colocá-lo no cradle, apertar o botão e esperar. Seria possível também programar outros tipos de tarefas. Se você tivesse uma câmera digital existiria a possibilidade de transferir automaticamente as fotos para o PC ou o Palm, ou mesmo enviá-las via e-mail ou salvá-las num disco virtual usando a conexão do celular. Estes claro são alguns exemplos, existem muitas outras aplicações possíveis aqui. A idéia seria fazer todas as conexões que seriam possíveis utilizando fios mas de uma forma bem mais prática. Se realmente conseguirem produzir transmissores bluetooth por 5 dólares cada um, isto tem uma grande possibilidade de acontecer. Veja que entre as aplicações que citei, não estão planos de criar redes usando apenas o bluetooth, o padrão é muito lento para isto. Ele serviria no máximo para compartilhar a conexão com a Web entre dois PCs próximos e compartilhar pequenos arquivos. Para uma rede mais funcional seria preciso apelar para os cabos de rede ou um dos padrões de rede sem fio que citei há pouco, que são mais rápidos e têm um alcance maior que o bluetooth. Finalmente, outra área em que o Bluetooth será muito útil é nas Internet Appliances. Se você nunca ouviu o termo, estes são periféricos que oferecem alguma funcionalidade relacionada à Web. O conceito pode ser usado para adicionar recursos à maioria dos eletrodomésticos, mas algum tipo de conexão sem fio é essencial para tudo funcionar. Na casa do futuro é fácil imaginar um PC servindo como servidor central, concentrando recursos que vão desde espaço em disco e conexão à web até poder de processamento. Todos os outros dispositivos podem utilizar os recursos do servidor. 62 Toda esta flexibilidade torna uma eventual migração para o 1000BaseT relativamente simples, já que você pode aproveitar o cabeamento já existente. Na verdade, muita pouca coisa muda. Note que apesar dos cabos serem os mesmos, o 1000BaseT faz um uso muito mais intensivo da capacidade de transmissão e por isso detalhes como o comprimento da parte destrançada do cabo para o encaixe do conector, o nível de interferência no ambiente, cabos muito longos, etc. são mais críticos. Com um cabeamento ruim, o índice de pacotes perdidos será muito maior do que numa rede de 100 megabits. Todos estes padrões de Gigabit Ethernet são intercompatíveis apartir da camada Data Link do modelo OS]. Abaixo da Data Link está apenas a camada física da rede, que inclui o tipo de cabos e o tipo de modulação usado para transmitir dados através deles. Os dados transmitidos, incluindo camadas de correção de erro, endereçamento, etc. são idênticos em qualquer um dos padrões. Assim como muitos hubs, inclusive modelos baratos permitem juntar redes que utilizam cabos de par trançado e cabo coaxial, é muito simples construir dispositivos que permitam interligar estes diferentes padrões. Isto permite interligar facilmente seguimentos de rede com cabeamento e cobre e de fibra óptica, que podem ser usados nos locais onde os 100 metros dos cabos cat 5 não são suficientes. As placas Gigabit Ethernet já estão relativamente acessíveis, custando entre 150 e 500 dólares. Existe um modelo da DLink, o DGE550T (Gigabit over copper). que já custa abaixo dos 100 dólares, mas naturalmente tudo nos EUA. Os switchs continuam sendo o equipamento mais caro, custando na casa dos 1000 dólares (Janeiro de 2001). Naturalmente não é uma tecnologia que você utilizaria na sua rede doméstica, até por que existiriam poucas vantagens sobre uma rede tradicional de 100 megabits, mas o ganho de velocidade faz muita diferença nos pontos centrais de grandes redes, interligando os principais servidores, criando sistemas de balanceamento de carga, backup, etc. Outro uso são os clusters de computadores, onde é preciso um link muito rápido para obter o melhor desempenho. As placas Gigabit Ethernet podem operar tanto no modo full-duplex, onde os dois lados podem transmitir dados simultâneamente, quanto no modo half-duplex. O que determina o uso de um modo ou de outro é novamente o uso de um hub ou de um switch. Você verá muitas placas anunciadas como capazes de operar a 2 Gigabits, o que nada mais é do que uma alusão ao uso do modo full-duplex. Já que temos 1 Gigabit em cada sentido, naturalmente a velocidade total é de 2 Gigabits. Mas, na prática não funciona bem assim pois raramente ambas as estações precisarão transmitir grandes quantidades de dados. O mais comum é uma relação assimétrica, com uma falando e a outra apenas enviando os pacotes de confirmação, onde o uso do full-duplex traz um ganho marginal. 65 Guia completo de - Carlos E. Morimoto http .guiadoha Placa Gigabit Ethernet, cortesia da DLink Assim como as placas de 100 megabits, as placas gigabit são completamente compatíveis com os padrões anteriores. Você pode até mesmo ligar uma placa Gigabit Ethernet a um hub 10/100 se quiser, mas a velocidade terá de ser nivelada por baixo, respeitando a do ponto mais lento. Considerando o custo o mais inteligente é naturalmente usar um switch, ou um PC com várias placas de rede para que cada ponto da rede possa trabalhar na sua velocidade máxima. 10 Gigabit Ethernet O primeiro padrão de redes 10 Gigabit Ethernet, novamente 10 vezes mais rápido que o anterior, está em desenvolvimento desde 1999 e chama-se 10GBaseX. O padrão ainda está em fase de testes, mas deverá ser finalizado ainda na primeira metade de 2002. Daí podemos contar pelo menos mais 4 ou 6 meses até que os primeiros produtos cheguem ao mercado e outros tantos até que comecem a se popularizar. Este padrão é bastante interessante do ponto de vista técnico, pois além da velocidade, o alcance máximo é de nada menos que 40 KM, utilizando cabos de fibra óptica monomodo. Existe ainda uma opção de baixo custo, utilizando cabos multimodo, mas que em compensação tem um alcance de apenas 300 metros. O 10 Gigabit Ethernet também representa o fim dos hubs. O padrão permite apenas o modo de operação full-duplex, onde ambas as estações podem enviar e receber dados simultâneamente, o que só é possível através do uso de switchs. Isto encarece mais ainda o novo padrão, mas trás ganhos de desempenho consideráveis, já que além de permitir o uso do modo full-duplex, o uso de um switch acaba com as colisões de pacotes. Outra mudança importante é que, pelo menos por enquanto, sequer é cogitado o desenvolvimento de um padrão que utilize cabos de cobre, sequer sabe-se se seria possível. Mas, isto não é conclusivo, pois os padrões iniciais do Gigabit também traziam como opções apenas os cabos de fibra óptica. O par trançado veio apenas em 99, dois anos depois. 66 - Carlos E. Morimoto http .guiadoha Placa 10 Gigabit, cortesia da Cisco O 10 Gigabit não se destina a substituir os padrões anteriores, pelo menos a médio prazo. A idéia é complementar os padrões de 10, 100 e 1000 megabits, oferecendo uma solução capaz e interligar redes distantes com uma velocidade comparável aos backbones DWDM, uma tecnologia muito mais cara, utilizada atualmente nos backbones da Internet. Suponha por exemplo que você precise interligar 5.000 PCs, divididos entre a universidade, o parque industrial e a prefeitura de uma grande cidade. Você poderia utilizar um backbone 10 Gigabit Ethernet para os backbones principais, unindo os servidores dentro dos três blocos e os interligando à Internet, usar uma malha de switchs Gigabit Ethernet para levar a rede até as salas, linhas de produção e salas de aula e usar hubs 10/100 para levar a rede até os alunos e funcionários, talvez complementando com alguns pontos de acesso 802.11b para oferecer também uma opção de rede sem fio. Isto estabelece uma pirâmide, onde os usuários individuais possuem conexões relativamente lentas, de 10 ou 100 megabits, interligadas entre sí e entre os servidores pelas conexões mais rápidas e caras, um sistema capaz de absorver várias chamadas de videoconferência simultâneas por exemplo. Tanto o Gigabit quanto o 10 Gigabit sinalizam que as redes continuarão a ficar cada vez mais rápidas e mais acessíveis. Hoje em dia é possível comprar uma placa 10/100 por menos de 30 reais e, com o barateamento dos novos padrões, estes preços não voltarão a subir. Com as redes tão baratas, aplicações que estavam fora de moda, como os terminais diskless, terminais gráficos, etc. voltaram a ser atrativas. Os PCs continuam relativamente caros, mas a banda de rede está muito barata. Com isto, começa a fazer sentido aproveitar PCs antigos, transformando-os em terminais de PCs mais rápidos. Um único Pentium IIl ou Duron pode servir 5, 10 ou até mesmo 20 terminais 486 e com um desempenho muito bom, já que os aplicativos rodam no servidor, não nos terminais. Veremos como colocar esta idéia em prática mais adiante. Ponto a ponto x cliente - servidor Seguramente, a polêmica em torno de qual destas arquiteturas de rede é melhor, irá continuar durante um bom tempo. Centralizar os recursos da rede em um servidor dedicado, rodando um sistema operacional de rede, como um Windows NT Server ou Novell Netware, garante uma maior segurança para a rede, garante um ponto central para arquivos; e ao mesmo tempo, oferece uma proteção maior contra quedas da rede, pois é muito mais difícil um servidor dedicado travar ou ter algum problema que o deixe fora do ar, do que um servidor de arquivos não dedicado, rodando o Windows 95, e operado por alguém que mal sabe o efeito de apertar “Ctrl+ Alt+ Del” :) 67 Imagine uma rede com 4 micros: O micro 1, operado pelo João que disponibiliza a única impressora da rede, o micro 2, operado pela Renata, que serve como um ponto central de armazenamento dos arquivos na rede, o micro 3, operado pelo Rodrigo, que disponibiliza um CD- ROM (também o único da rede) e o micro 4, operado pelo Rafael, onde está instalado o modem que compartilha sua conexão à Internet. Todos os micros são servidores, respectivamente de impressão, arquivos, CD-ROM e acesso à Internet. Porém, ao mesmo tempo, todos estão sendo usados por alguém como estação de trabalho. Dizemos então que os 4 micros são servidores não dedicados. Sua vantagem é que (como no exemplo), não precisamos sacrificar uma estação de trabalho, mas em compensação, temos um sistema mais vulnerável. Outro inconveniente é que é preciso manter o micro ligado (mesmo que ninguém o esteja usando), para que seus recursos continuem disponíveis para a rede. Impressoras de rede Simplesmente disponibilizar uma impressora a partir de uma estação de trabalho é a forma mais simples e barata de coloca-la à disposição da rede. Este arranjo funciona bem em redes pequenas, onde a impressora não é tão utilizada. Mas, se a impressora precisar ficar imprimindo a maior parte do tempo, será difícil para quem está usando o micro da impressora conseguir produzir alguma coisa, já que usando o Windows 95/98 o micro fica bastante lento enquanto está imprimindo. Neste caso, talvez fosse melhor abandonar a idéia de um servidor de impressão não dedicado, e reservar um micro para ser um servidor dedicado de impressão. Neste caso, o micro não precisa ser lá grande coisa, qualquer 486 com espaço em disco suficiente para instalar o Windows 95 (e mais uns 80 ou 100 MB livres para armazenar os arquivos temporários do spooler de impressão) dará conta do recado. Coloque nele um monitor monocromático, deixe-o num canto da sala sempre ligado e esqueça que ele existe :-) Outra opção seria usar um dispositivo servidor de impressão. Estas pequenas caixas possuem seu próprio processador, memórias e placa de rede, substituindo um servidor de impressão. As vantagens deste sistema são a praticidade e o custo, já que os modelos mais simples custam em torno de 200 - 250 dólares. Um bom exemplo de dispositivos servidores de impressão são os JetDirect da HP. Basta conectar o dispositivo à rede, conectá-lo à impressora e instalar o programa cliente nos micros da rede que utilizarão a impressora. Para maiores informações sobre os JetDirect, consulte o site da HP, http://www.hp.com/net printing Finalmente, você poderá utilizar uma impressora de rede. Existem vários modelos de impressoras especiais para este fim, que tem embutida uma placa de rede, processador e memória RAM, ou seja, “vem com um JetDirect embutido”. Normalmente apenas as impressoras a Laser mais caras (a HP Laser Jet 8500 N por exemplo) possuem este recurso, por isso, na maioria dos casos as duas primeiras opções são mais viáveis para a sua pequena rede. Protocolos 70 Toda a parte física da rede: cabos, placas, hubs, etc., serve para criar um meio de comunicação entre os micros da rede, como o sistema telefônico ou os correios, que permitem que você comunique-se com outras pessoas. Porém, assim como para que duas pessoas possam falar pelo telefone é preciso que ambas falem a mesma língua, uma saiba o número da outra, etc. para que dois computadores possam se comunicar através da rede, é preciso que ambos usem o mesmo protocolo de rede. Um protocolo é um conjunto de regras que definem como os dados serão transmitidos; como será feito o controle de erros e retransmissão de dados; como os computadores serão endereçados dentro da rede etc. Um micro com o protocolo NetBEUI instalado, só será capaz de se com unicar através da rede com outros micros que também tenham o protocolo NetBEUI, por exemplo. E possível que um mesmo micro tenha instalados vários protocolos diferentes, tornando-se assim um “poliglota”. Graças aos protocolos, também é possível que computadores rodando diferentes sistemas operacionais de rede, ou mesmo computadores de arquiteturas diferentes se comuniquem, basta apenas que todos tenham um protocolo em comum. O TCP/IP, por exemplo, é um protocolo suportado por praticamente todos os sistemas operacionais. O uso do TCP/IP é que permite o milagre de computadores de arquiteturas totalmente diferentes, como PCs, Macs, Mainframes e até mesmo, telefones celulares e micros de bolso poderem comunicar-se livremente através da Internet. Camadas da rede Uma rede é formada por várias camadas. Primeiro temos toda a parte física da rede, incluindo os cabos, hubs e placas de rede. Sobre a parte física temos primeiramente a topologia lógica da rede que, como vimos, é determinada pela própria placa de rede. Em seguida, temos o driver da placa rede que é fornecido pelo fabricante e permite que o sistema operacional possa acessar a placa de rede, atendendo às solicitações do protocolo de rede, o sistema operacional de rede e finalmente os programas. A primeira camada é física, e as demais são lógicas. Aplicativos que utilizam a rede Sistema operacional de rede Software ! Hardware Atualmente são usados basicamente 3 protocolos de rede: o NetBEUI, o IPX/SPX e o TCP/IP. Cada um com suas características próprias: 71 NetBEUI O NetBEUI é uma espécie de “vovô protocolo”, pois foi lançado pela IBM no início da década de 80 para ser usado junto com o IBM PC Network, um micro com configuração semelhante à do PC XT, mas que podia ser ligado em rede. Naquela época, o protocolo possuía bem menos recursos e era chamado de NetBIOS. O nome NetBEUI passou a ser usado quando a IBM estendeu os recursos do NetBIOS, formando o protocolo complexo que é usado atualmente. No jargão técnico atual, usamos o termo “NetBEUI” quando nos referimos ao protocolo de rede em sí e o termo “NetBIOS” quando queremos nos referir aos comandos deste mesmo protocolo usado pelos programas para acessar a rede. Ao contrário do IPX/SPX e do TPC/IP, o NetBEUI foi concebido para ser usado apenas em pequenas redes, e por isso acabou tornando-se um protocolo extremamente simples. Por um lado, isto fez que ele se tornasse bastante ágil e rápido e fosse considerado o mais rápido protocolo de rede durante muito tempo. Para você ter uma idéia, apenas as versões mais recentes do IPX/SPX e TCP/IP conseguiram superar o NetBEUI em velocidade. Mas, esta simplicidade toda tem um custo: devido ao método simples de endereçamento usado pelo NetBEUI, podemos usa-lo em redes de no máximo 255 micros. Além disso, o Net BEUI não suporta enumeração de redes (para ele todos os micros estão ligados na mesma rede). Isto significa, que se você tiver uma grande Intranet, composta por várias redes interligadas por roteadores, os micros que usarem o NetBEUI simplesmente não serão capazes de enxergar micros conectados às outras redes, mas apenas os micros a que estiverem conectados diretamente. Devido a esta limitação, dizemos que o NetBEUI é um protocolo “não roteável” Apesar de suas limitações, o NetBEUI ainda é bastante usado em redes pequenas, por ser fácil de instalar e usar, e ser razoavelmente rápido. Porém, para redes maiores e Intranets de qualquer tamanho, o uso do TCP/IP é muito mais recomendável. IPX/ SPX Este protocolo foi desenvolvido pela Novell, para ser usado em seu Novell Netware. Como o Netware acabou tornando-se muito popular, outros sistemas operacionais de rede, incluindo o Windows passaram a suportar este protocolo. O IPX/SPX é tão rápido quanto o TPC/IP (apesar de não ser tão versátil) e suporta roteamento, o que permite seu uso em redes médias e grandes. Apesar do Netware suportar o uso de outros protocolos, incluindo o TPC/IP, o IPX/SPX é seu protocolo preferido e o mais fácil de usar e configurar dentro de redes Novell. Você já deve ter ouvido muito a respeito do Netware, que é o sistema operacional de rede cliente - servidor mais utilizado atualmente. Além do módulo principal, que é instalado no servidor, é fornecido um módulo cliente, que deve ser instalado em todas as estações de trabalho, para que elas ganhem acesso ao servidor. Além da versão principal do Netware, existe a versão Personal, que é um sistema de rede ponto a 72 primeiro octeto for um número entre 128 e 191, então temos um endereço de classe B (como em 167.27.135.203) e, finalmente, caso o primeiro octeto seja um número entre 192 e 223 teremos um endereço de classe C: Octetos: 255 255 . 255 . 255 E ] . Classe BB: | Rede EI EI s Classe Rede | Rede EI . Endereços válidos o = bs: desde que os três nem todos 255 Ao implantar uma rede TCP/IP você deverá analisar qual classe de endereços é mais adequada, baseado no número de nós da rede. Veja que, com um endereço classe C, é possível endereçar apenas 254 nós de rede; com um endereço B já é possível endereçar até 65,534 nós, sendo permitidos até 16,777,214 nós usando endereços classe A. Claro que os endereços de classe C são muito mais comuns. Se você alugar um backbone para conectar a rede de sua empresa à Internet, muito provavelmente irá receber um endereço IP classe C, como 203.107.171.x, onde 203.107.171 é o endereço de sua rede dentro da Internet, e o “x” é a faixa de 254 endereços que você pode usar para identificar seus hosts. Veja alguns exemplos de endereços TCP/IP válidos: Classe A 105.216.56.185 | 45.210.173.98 124.186.45.190 | 89.42.140.202 |34.76.104.205 98.65.108.46 Classe B 134.65.108.207 | 189.218.34.100 |156.23.219.45 167.45.208.99 |131.22.209.198 | 190.22.107.34 Classe C 222.45.198.205 | 196.45.32.145 218.23.108.45 212.23.187.98 |220.209.198.56 | 198.54.89.3 Como você deve ter notado, nem todas as combinações de valores são permitidas. Alguns números são reservados e não podem ser usados em sua rede. Veja agora os endereços IPs inválidos: Endereço inválido O.xxx.xxx.xxx Por que? Nenhum endereço IP pode começar com zero, pois o identificador de rede O é utilizado para indicar que se está na mesma rede, a chamada rota padrão. 75 127.xxx.xxx.xxx Nenhum endereço IP pode começar com o número 127, pois este número é reservado para testes internos, ou seja, são destinados à própria máquina que enviou o pacote. Se por exemplo você tiver um servidor de SMTP e configurar seu programa de e-mail para usar o servidor 127.0.0.1 ele acabará usando o próprio servidor instalado máquina :-) 255.XXX.XXX.Xxx Nenhum identificador de rede pode ser 255 e nenhum identificador de xxx.255.255.255 host pode ser composto apenas de endereços 255, seja qual for a classe XXx.xxx.255.255 do endereço. Outras combinações são permitidas, como em 65.34.255.197 (num endereço de classe A) ou em 165.32.255.78 (num endereço de classe B). xxx.0.0.0 Nenhum identificador de host pode ser composto apenas de zeros, seja xxx.xxx.0.0 qual for a classe do endereço. Como no exemplo anterior, são permitidas outras combinações como 69.89.0.129 (classe A) ou 149.34.0.95 (classe B) XXX.XXX.XXX.255 Nenhum endereço de classe C pode terminar com O ou com 255, pois XXX.XXx.Xxxx. O como já vimos, um host não pode ser representado apenas por valores O ou 255. Os endereços xxx.255.255.255 XXX.xxx.255.255 e xXX.XXX.xxx.255 são sinais de broadcast que são destinados simultâneamente à todos os computadores da rede. Estes endereços são usados por exemplo numa rede onde existe um servidor DHCP, para que as estações possam receber seus endereços IP cada vez que se conectam à rede. Se você não pretender conectar sua rede à Internet, você pode utilizar qualquer faixa de endereços IP válidos e tudo irá funcionar sem problemas. Mas, apartir do momento em que você resolver conecta-los à Web os endereços da sua rede poderá entrar em conflito com endereços já usados na Web. Para resolver este problema, basta utilizar uma das faixas de endereços reservados. Estas faixas são reservadas justamente ao uso em redes internas, por isso não são roteadas na Internet. As faixas de endereços reservados mais comuns são 10.x.x.x e 192.168.x.x, onde respectivamente o 10 e o 192.168 são os endereços da rede e o endereço de host pode ser configurado da forma que desejar. O ICS do Windows usa a faixa de endereços 192.168.0.x. Ao compartilhar a conexão com a Web utilizando este recurso, você simplesmente não terá escolha. O servidor de conexão passa a usar o endereço 192.168.0.1 e todos os demais micros que forem ter acesso à Web devem usar endereços de 192.168.0.2 a 192.168.0.254, já que o ICS permite compartilhar a conexão entre apenas 254 PCs. O default em muitos sistemas é 192.168.1.x, mas você pode usar os endereços que quiser. Se você quiser uma faixa ainda maior de endereços para a sua rede interna, é só apelar para a faixa 10.x.x.x, onde você terá à sua disposição mais de 12 milhões de endereços diferentes. Veja que usar uma destas faixas de endereços reservados não impede que os PCs da sua rede possam acessar a Internet, todos podem acessar através de um servidor proxy. 76 Máscara de sub-rede Ao configurar o protocolo TPC/IP, seja qual for o sistema operacional usado, além do endereço IP é preciso informar também o parâmetro da máscara de sub-rede, ou “subnet mask”. Ao contrário do endereço IP, que é formado por valores entre O e 255, a máscara de sub-rede é formada por apenas dois valores: O e 255, como em 255.255.0.0 ou 255.0.0.0. onde um valor 255 indica a parte endereço IP referente à rede, e um valor O indica a parte endereço IP referente ao host. A máscara de rede padrão acompanha a classe do endereço IP: num endereço de classe A, a máscara será 255.0.0.0, indicando que o primeiro octeto se refere à rede e os três últimos ao host. Num endereço classe B, a máscara padrão será 255.255.0.0, onde os dois primeiros octetos referem-se à rede e os dois últimos ao host, e num endereço classe C, a máscara padrão será 255.255.255.0 onde apenas o último octeto refere-se ao host. Ex. de endereço Classe do Parte referente à Parte referente ao Mascara de sub-rede IP Endereço [EIS [os padrão 98.158.201.128 Classe A 98. 158.201.128 255.0.0.0 (rede.host.host.host) 158.208.189.45 Classe B 158.208. 189.45 255.255.0.0 (rede.rede.host.host) 208.183.34.89 Classe C 208.183.34. 89 255.255.255.0 (rede.rede.rede.host) Mas, afinal, para que servem as máscaras de sub-rede então? Apesar das máscaras padrão acompanharem a classe do endereço IP, é possível “mascarar” um endereço IP, mudando as faixas do endereço que serão usadas para endereçar a rede e o host. O termo “máscara de sub-rede” é muito apropriado neste caso, pois a “máscara” é usada apenas dentro da sub-rede. Veja por exemplo o endereço 208.137.106.103. Por ser um endereço de classe C, sua máscara padrão seria 255.255.255.0, indicando que o último octeto refere-se ao host, e os demais à rede. Porém, se mantivéssemos o mesmo endereço, mas alterássemos a máscara para 255.255.0.0 apenas os dois primeiros octetos (208.137) continuariam representando a rede, enquanto o host passaria a ser representado pelos dois últimos (e não apenas pelo último). Parte referente ao host Ex. de endereço IP Máscara de sub-rede Parte referente à rede 208.137.106.103 255.255.255.0 208.137.106. 103 (padrão) 208.137.106.103 255.255.0.0 208.137. 106.103 208.137.106.103 255.0.0.0 208. 137.106.103 Veja que 208.137.106.103 com máscara 255.255.255.0 é diferente de 208.137.106.103 com máscara 255.255.0.0: enquanto no primeiro caso temos o host 103 dentro da rede 208.137.106, no segundo caso temos o host 106.103 dentro da rede 208.137. 77 Decimal: 203 107 171 x Binário: 11001011 11010110 10101011 22292 22999 rede rede rede rede host Para tanto, ao invés de usar a máscara de sub-rede 255.255.255.0 (converta para binário usando a calculadora do Windows e terá 11111111.11111111.11111111.00000000) que, como vimos, reservaria todos os 8 bits para o endereçamento do host, usaremos uma máscara 255.255.255.240 (corresponde ao binário 11111111.111111.11111111.11110000). Veja que numa máscara de sub-rede os números binários “1” referem-se à rede e os números “0” referem- se ao host. Veja que na máscara 255.255.255.240 temos exatamente esta divisão, os 4 primeiros binários do último octeto são positivos e os quatro últimos são negativos. Máscara de sub-rede: Decimal: 255 255 255 240 Binário: 11111111 11111111 11111111 1111 0000 rede rede rede rede host Temos agora o último octeto dividido em dois endereços binários de 4 bits cada. Cada um dos dois grupos, agora representa um endereço distinto, e deve ser configurado independentemente. Como fazer isso? Veja que 4 bits permitem 16 combinações diferentes. Se você converter o número 15 em binário terá “1111” e se converter o decimal 0, terá “0000”. Se converter o decimal 11 terá “1011” e assim por diante. Use então endereços de O a 15 para identificar os hosts, e endereços de 1 a 14 para identificar a rede. Veja que os endereços 0 e 15 não podem ser usados para identificar o host, pois assim como os endereços O e 255, eles são reservados. Endereço IP: Decimal 203 107 171 12.14 Binário 11111111 11111111 11111111 11001110 rede rede rede rede host Estabeleça um endereço de rede para cada uma das duas sub-redes que temos, e em seguida, estabeleça um endereço diferente para cada micro da rede, mantendo a formatação do exemplo anterior. Por enquanto, apenas anote num papel os endereços escolhidos, junto como seu correspondente em binários. Quando for configurar o endereço IP nas estações, primeiro configure a máscara de sub-rede como 255.255.255.240 e, em seguida, converta os binários dos endereços que você anotou no papel, em decimais, para ter o endereço IP de cada estação. No exemplo da ilustração anterior, havíamos estabelecido o endereço 12 para a rede e o endereço 14 para a estação; 12 corresponde a “1100” e 14 corresponde a “1110”. Juntando os dois temos “11001110” que corresponde ao decimal “206”. O endereço IP da estação será então 203.107.171.206. Se você tivesse escolhido o endereço 10 para a rede a o endereço 8 para a estação, teríamos 80 “10101000” que corresponde ao decimal 168. Neste caso, o endereço IP da estação seria 203.107.171.168 Caso você queira reservar mais bits do último endereço para o endereço do host (caso tenha mais de 16 hosts e menos de 6 redes), ou então mais bits para o endereço da rede (caso tenha mais de 14 redes e menos de 8 hosts em cada rede). Máscara de sub- Bits da rede Bits do host Número máximo Número máximo rede de redes de hosts 240 1111 0000 14 endereços (de | 16 (endereços de 1a 14) 0a 15) 192 1 000000 2 endereços (2 e | 64 (endereços de 3) 0a 63) 224 111 00000 6 endereços (de 1 | 32 (endereços de a6) 0a 31) 248 1111 000 30 endereços (de | 8 endereços (de 0 1a30) a7) 252 11111 00 62 endereços (de | 4 endereços (de 0 1a 62) a3) Em qualquer um dos casos, para obter o endereço IP basta converter os dois endereços (rede e estação) para binário, “juntar” os bits e converter o octeto para decimal. Usando uma máscara de sub-rede 192, por exemplo, e estabelecendo o endereço 2 (ou “10” em binário) para a rede e 47 ( ou “101111” em binário) para o host, juntaríamos ambos os binários obtendo o octeto “10101111” que corresponde ao decimal “175”. Se usássemos a máscara de sub-rede 248, estabelecendo o endereço 17 (binário “10001”) para a rede e o endereço 5 (binário “101”) para o host, obteríamos o octeto “10001101” que corresponde ao decimal “141” Claro que as instruções acima valem apenas para quando você quiser conectar vários micros à Web, usando uma faixa de endereços válidos. Caso você queira apenas compartilhar a conexão entre vários PCs, você precisará de apenas um endereços IP válido. Neste caso, o PC que está conectado à Web pode ser configurado (usando um Proxy) para servir como portão de acesso para os demais. Usando o DHCP Ao invés de configurar manualmente os endereços IP usados por cada máquina, é possível fazer com que os hosts da rede obtenham automaticamente seus endereços IP, assim como sua configuração de máscara de sub-rede e defaut gateway. Isto torna mais fácil a tarefa de manter a rede e acaba com a possibilidade de erros na configuração manual dos endereços IP. Para utilizar este recurso, é preciso implantar um servidor de DHCP na rede. A menos que sua rede seja muito grande, não é preciso usar um servidor dedicado só para isso: você pode outorgar mais esta tarefa para um servidor de arquivos, por exemplo. O serviço de servidor DHCP pode ser 81 instalado apenas em sistemas destinados a servidores de rede, como o Windows NT Server, Windows 2000 Server, Novell Netware 4.11 (ou superior) além claro do Linux e das várias versões do Unix. Do lado dos clientes, é preciso configurar o TCP/IP para obter seu endereço DHCP a partir do servidor. Para fazer isso, no Windows 98 por exemplo, basta abrir o ícone redes do painel de controle, acessar as propriedades do TCP/IP e na guia “IP Address” escolher a opção “Obter um endereço IP automaticamente”. Cada vez que o micro cliente é ligado, carrega o protocolo TCP/IP e em seguida envia um pacote de broadcast para toda a rede, perguntando quem é o servidor DHCP. Este pacote especial é endereçado como 255.255.255.255, ou seja, para toda a rede. Junto com o pacote, o cliente enviará o endereço físico de sua placa de rede. Ao receber o pacote, o servidor DHPC usa o endereço físico do cliente para enviar para ele um pacote especial, contendo seu endereço IP. Este endereço é temporário, não é da estação, mas simplesmente é “emprestado” pelo servidor DHCP para que seja usado durante um certo tempo. Uma configuração importante é justamente o tempo do empréstimo do endereço. A configuração do “Lease Duration” muda de sistema para sistema. No Windows NT Server por exemplo, pode ser configurado através do utilitário “DHCP Manager”. Depois de decorrido metade do tempo de empréstimo, a estação tentará contatar o servidor DHCP para renovar o empréstimo. Se o servidor DHCP estiver fora do ar, ou não puder ser contatado por qualquer outro motivo, a estação esperará até que tenha se passado 87.5% do tempo total, tentando várias vezes em seguida. Se terminado o tempo do empréstimo o servidor DHCP ainda não estiver disponível, a estação abandonará o endereço e ficará tentando contatar qualquer servidor DHCP disponível, repetindo a tentativa a cada 5 minutos. Porém, por não ter mais um endereço IP, a estação ficará fora da rede até que o servidor DHPC volte. Veja que uma vez instalado, o servidor DHCP passa a ser essencial para o funcionamento da rede. Se ele estiver travado ou desligado, as estações não terão como obter seus endereços IP e não conseguirão entrar na rede. Você pode configurar o tempo do empréstimo como sendo de 12 ou 24 horas, ou mesmo estabelecer o tempo como ilimitado, assim a estação poderá usar o endereço até que seja desligada no final do dia, minimizando a possibilidade de problemas, caso o servidor caia durante o dia. Todos os provedores de acesso à Internet usam servidores DHCP para fornecer dinâmicamente endereços IP aos usuários. No caso deles, esta é uma necessidade, pois o provedor possui uma faixa de endereços IP, assim como um número de linhas bem menor do que a quantidade total de assinantes, pois trabalham sobre a perspectiva de que nem todos acessarão ao mesmo tempo. Defaut Gateway Um rede TCP/IP pode ser formada por várias redes interligadas entre sí por roteadores. Neste caso, quando uma estação precisar transmitir algo a outra que esteja situada em uma rede diferente (isso é facilmente detectado através do endereço IP), deverá contatar o roteador de sua 82 transmissão, muito dificilmente conseguirá decifrar os pacotes, mesmo que tente durante vários meses. Embora seja necessário que o servidor VPN esteja rodando o Windows NT 4 Server, ou o Windows 2000 Server, as estações cliente podem usar o Windows 98, ou mesmo o Windows 95. Uma vez conectado à VPN, o micro cliente pode acessar qualquer recurso da rede, independentemente do protocolo: poderá acessar um servidor Netware usando o IPX/SPX ou um mainframe usando o DLC, por exemplo. Configurar a rede e compartilhar a conexão Depois de todas estas páginas de teoria, finalmente chegou a hora de colocar a mão na massa e montar nossa primeira rede. O restante deste livro será dedicado a conhecer as configurações de rede do Windows 95, 98 e 2000, aprender sobre segurança de rede, com algumas dicas práticas e exercitar um pouco nosso poder criativo com alguns exercícios práticos. Uma coisa de cada vez :-) O primeiro passo para montar uma rede é escolher os componentes físicos: placas de rede, hub e cabos de rede. Atualmente você deve considerar apenas a compra de placas de rede Ethernet 10/100 em versão PCI, a menos claro que pretenda ligar à algum 486 que não tenha slots PCI, neste caso você ainda poderá encontrar algumas placas ISA à venda. Prefira comprar uma placa de rede nova, pois atualmente as placas de rede são um periférico muito barato. Não vale à pena correr o risco de levar pra casa uma placa com defeito ou sem drivers para economizar 10 reais. No caso das placas ISA existe mais um problema em potencial. As placas antigas, sem suporte a plug-and-play são mais complicadas de instalar que as atuais. Ao invés de simplesmente espetar a placa e fornecer o driver você precisará utilizar primeiro o utilitário DOS, presente no disquete que acompanha a placa para configurar seus endereços e em seguida instala-la manualmente, através do “adicionar novo Hardware” do Windows, fornecendo os endereços que escolheu anteriormente. A instalação das placas de rede PCI não é simples apenas no Windows. Qualquer distribuição Linux atual também será capaz de reconhecer e instalar a placa logo na instalação. Em alguns pontos, a configuração da rede numa distribuição atual do Linux é mais simples até que no Windows 98 ou 2000. O Linux Mandrake, apartir da versão 8.0 chega ao cúmulo de configurar o Samba para integrar a estação Linux a uma rede Windows já existente de forma automática. Se você optar por utilizar uma rede sem fio 802.11b ou HomeRF os procedimentos não mudam. As placas de rede ou cartões PC-Card são instalados nos PCs e Notebooks como uma placa de rede normal e o ponto de acesso (no caso de uma rede 802.11b) deve ser posicionado num ponto central do ambiente, para permitir que todos os micros fiquem o mais próximos possível dele. Lembre-se que quanto menos obstáculos houver entre os PCs e o ponto de acesso, maior será o alcance do sinal: 85 E na Melhor o “mal DE iso = ER o na ES ms nE| MA HE Ls Colocar o ponto de acesso no meio da instalação ao invés de próximo da porta da frente ou de uma janela, também diminui a possibilidade de alguém captar (acidentalmente ou não) os sinais da sua rede. Um procedimento importante é escolher um código SSID para o seu ponto de acesso, o que pode ser feito através do software que o acompanha. Este código é o que impedirá que qualquer um possa se conectar à sua rede. Escolha um código difícil de adivinhar e configure todas as placas de rede para utilizarem o mesmo código que o servidor. Como disso, isto pode ser feito através do utilitário que acom panha cada componente. Se possível, compre placas e pontos de acesso do mesmo fabricante. Apesar de pontos de acesso e placas do mesmo padrão serem intercompatíveis, você pode ter um pouco mais de dificuldade para por a rede para funcionar caso cada placa venha com um software diferente. Mas, Voltando para as boas e velhas redes com fio (que presumo, ainda seja as mais comuns dentro dos próximos dois ou três anos), precisamos agora escolher o Hub e os cabos a utilizar. Eu não recomendo mais utilizar cabos coaxiais em hipótese alguma. Eles são mais caros, mais difíceis de achar (incluindo o alicate de crimpagem), a velocidade fica limitada a 10 megabits etc. Simplesmente estamos falando de um padrão que já faz parte do passado. Você teria interesse em comprar um PC com monitor monocromático? E um caso parecido :-) Já que (por simples imposição do autor :-)) vamos utilizar um hub e cabos de par trançado, resta escolher qual hub utilizar. Esta é a escolha mais difícil, pois além das diferenças de recursos, os preços variam muito. Se esta é a sua primeira rede, eu recomendo começar por um hub 10/100 simples, com 8 portas. Os mais baratos custam na faixa dos 50 dólares e você poderá conectar a ele tanto placas de rede de 10 quanto de 100 megabits. Lembre-se porém que caso apenas uma placa de 10 megabits esteja conectada, toda a rede passará a operar a 10 megabits. Este é o significado de 10/100. Existe uma forma de combinar placas de 10 e de 100 megabits na mesma rede, que é utilizar um hub-switch ao invés de um hub simples. O problema neste caso é o preço, já que um bom hub- switch não sairá por menos de 120 dólares. Você também poderá encontrar alguns hubs 10/10 por um preço camarada. Dependendo do preço e do uso da rede, não deixa de ser uma opção, já que mais tarde você poderá troca-lo por um hub 10/100 mantendo os demais componentes da rede. Não existe muito mistério quanto aos cabos. Basta comprar os cabos de categoria 5e, que são 86 Guia completo de Red Carlos E. Morimoto http .guiadoha net praticamente os únicos que você encontrará à venda, além dos conectores e um alicate de crimpagem, ou, se preferir, comprar os cabos já crimpados. A parte mais complicada pode ser passar os cabos através das paredes ou do forro do teto. O negócio aqui é pensar com calma a melhor forma de passa-los. Uma opção é comprar canaletas e fazer uma instalação aparente. Para passar os cabos pelas paredes não há outra alternativa senão crimpá-los você mesmo. Esta relativa dificuldade na instalação dos cabos é o que vem levando algumas pessoas a investir numa rede sem fio. Pessoalmente eu acho que os componentes ainda estão muito caros. Ainda sairá muito mais barato comprar um alicate de crimpagem e contratar um eletricista para passar os cabos se for o caso. Planejando a rede Depois de resolvida a instalação física da rede, planeje a configuração lógica da rede. Ou seja, se você pretende compartilhar a conexão com a Web, quais micros compartilharão arquivos, impressoras e outros recursos, qual será o endereço IP de cada micro e assim por diante. Vamos exercitar um pouco a imaginação. Imagine que você tenha três micros. Um deles (vamos chamar de Artemis) têm uma conexão via cabo, que você quer compartilhar com os outros dois PCs (Athena e Odin). Como o cable modem é ligado ao Artemis através de uma placa de rede, você precisará instalar uma segunda placa para liga-lo à rede. Ele passará a ter então dois endereços IP, o da internet, fornecido pelo seu provedor ou obtido automaticamente e um segundo IP para a sua rede interna. Você pode usar por exemplo o endereço 192.168.0.1 para o Artemis (o defaut ao compartilhar a conexão através do ICS do Windows) e IPs sequenciais para os outros dois micros: 192.168.0.2 e 192.168.0.3. A máscara de sub-rede será 255.255.255.0 em todos os micros: ml Athena HE! Artemis 192.168.0.2 192,168.0.1 Máscara de Odin E 192.168.0.3 Hub sub-rede: 255.255.255.0 Neste caso o Artemis passa a ser também o Gateway da rede ou seja, o PC que os outros dois irão consultar sempre que for solicitado qualquer endereço que não faça parte da sua rede local. O Artemis se encarregará então de enviar os pedidos através da Internet e devolver as respostas. E assim que funciona o acesso compartilhado. Na verdade o Artemis continua sendo o único conectado à Web, mas graças a este trabalho de garoto de recados, todos passam a ter acesso. 87 Para que o micro possa acessar a Internet, você deverá instalar também o “Adaptador para redes dial-up”. Para isto, clique em “adaptador” na janela de instalação de componentes, e no menu que surgirá, escolha “Microsoft” no menu da esquerda, e em seguida, “Adaptador para redes dial-up” no menu da direita. lecionar Serviço de rede = Clique no serviço de rede a ser instalado e, em seguida, clique em UK. Se EG Pesttum disco de instalação para esse dispositivo, clique em 'Com disco”. Modelos: E Compartilhamento de arquivos e impressoras para redes Netware El Serviço para Serviços de diretório do Metiw'are Com disco.. Cancelar EE Clique no adaptador de rede que conesponde a seu hardware e, em EB) seguida, clique em “DK! Se possuir um disco de instalação para esse dispositivo, clique em Com disco”. Fabricantes: Adaptadores de rede: oc Eis fee) E) Adaptador para rede particular virtual Microsoft E Mational Datacomm EB National Sercerd a] + Eom disco Cancelar Configurações 90 Guia completo de Redes - Carlos E. Morimoto http://www .guiadohardware.net Após instalar os itens anteriores, seu ambiente de rede deverá estar como o exemplo da figura ao abaixo. Clique no botão “Compartilhamento de arquivos e impressoras” e surgirá um menu com duas seleções: “desejo que outros usuários tenham acesso aos meus arquivos” e “desejo que outros usuários tenham acesso às minhas impressoras”. Por enquanto, mantenha marcados ambos os campos. Cliente para redes Microsoft daptador para rede dial-up BOCALAN card 2000 Plus & TCPAP -> Adaptador para rede dial-up TCPRAP > BOCALANcard 2000 Plus Compartilhamento de arquivos e impressoras be Pe Voltando à janela principal, acesse agora a guia “Identificação”. Nos campos, você deve dar um 91 nome ao micro. Este nome será a identificação do micro dentro da rede Microsoft, e deverá ser diferente em cada micro da rede. Este nome poderá ter até 15 caracteres. São permitidos apenas caracteres alfanuméricos e os caracteres ! D 4 $% "&()- [ )“*.- enão são permitidos espaços em branco. Na mesma janela você deverá digitar o nome do grupo de trabalho do qual o computador faz parte. Todos os micros de uma mesma sessão deverão fazer parte do mesmo grupo de trabalho, isto facilitará o acesso aos recursos, pois fará com que todos apareçam na mesma janela, quando você localizar um micro na rede, e dentro na mesma pasta, quando abrir o ícone “ambiente de redes” Finalmente, digite algo que descreva o micro no campo “Descrição do computador”, este campo não altera em nada a configuração ou o funcionamento da rede, mas será visto por outros usuários que acessarem recursos com partilhados pelo seu micro. Você pode digitar, por exemplo, o nome do usuário do micro, ou então alguma observação como “Micro do chefe”. Acesse agora a guia “Controle de acesso”. Aqui você poderá escolher entre “Controle de acesso em nível de compartilhamento” e “controle de acesso em nível de usuário”. A primeira opção se destina a compartilhar recursos numa rede ponto a ponto, onde um recurso compartilhado fica acessível a todos os demais micros da rede, podendo ser protegido apenas com uma senha. A opção de controle de acesso a nível de usuário pode ser usada apenas em redes cliente — servidor; selecionando esta opção, você deverá configurar as permissões de acesso aos recursos da rede no servidor e informar no campo, o endereço do servidor onde estão estas informações. Rede HE Configuração Identificação | Controle de avesso | O Windows usa as informações a seguir para identificar seu computador na rede. Digite o nome, o arupo de trabalho em que aparecerá e uma breve descrição do computador. Nome do computador: |Principal Grupo de trabalho: Escritorio Descrição do Usado por Carlos E. Morimoto computador: Cancelar 92 drivers de CD-ROM, impressoras, pastas e mesmo uma unidade de disco inteira. Para compartilhar um recurso, basta abrir o ícone “Meu Computador”, clicar com o botão direito sobre o ícone do disco rígido, CD-ROM, drive de disquetes, etc., e escolher “compartilhamento” no menu que surgirá. FERE EE Geral | Ferramentas Compartilhamento | Compactação | Não compartilhado &* Compartilhado como; Nome do ET compartilhamento: Comentário: disco rígido da máquina 1 Tipo de acesso: Somente leitura €€ Completo Abrir f” Depende de senha Explorar a Senhas: Localizar... E âddtoZip Genha somenteleitura Senha para acesso completo: Formatar. Colar Criar atalho DK E | Bpl Mude a opção de “Não compartilhado” para “Compartilhado como”. No campo “Nome do Compartilhamento” dê o nome que identificará o compartilhamento na rede. Você pode, por exemplo, dar o nome “C:” para o disco rígido, “CD-ROM” para o CD-ROM, “Documentos” para uma pasta com arquivos do Word, etc. Veja que independentemente de ser um disco rígido inteiro, um CD-ROM, uma impressora, ou uma pasta, cada compartilhamento possui um nome exclusivo pelo qual será acessado através da rede. Na mesma janela você poderá configurar o tipo de acesso permitido para o compartilhamento. As opções são: Somente leitura : Os outros usuários poderão apenas ler os arquivos do disco, mas não poderão alterar os arquivos, ou copiar nada para o disco. Você pode usar este tipo de compartilhamento para proteger, por exemplo, arquivos de programas que são acessados por vários usuários, mas que não devem ser alterados. Completo : Determina que os outros usuários poderão ter acesso total à pasta ou disco compartilhado: copiar, alterar ou deletar, exatamente como se fosse um disco local. Depende da senha : Permite que você estabeleça senhas de acesso. Assim o recurso só poderá ser acessado caso o usuário do outro micro tenha a senha de acesso. Você poderá escolher senhas 95 diferentes para acesso completo e somente leitura. Ao invés de compartilhar todo o disco rígido, você poderá compartilhar apenas algumas pastas. Para isso, deixe o disco rígido como “Não Compartilhado”, e compartilhe apenas as pastas desejadas, clicando sobre elas com o botão direito e escolhendo “compartilhamento”. Compartilhar uma pasta significa compartilhar todos os arquivos e sub-pastas que estejam dentro. Infelizmente o Windows 98 não permite compartilhar arquivos individualmente. EEE RECENTES EH Geral Compartilhamento | € Não compartilhado fe Compartilhado como: Name co frqiros compartilhamento: 119 Abrir Comentário: Ea Tipo de acesso: OC alzar.. iz E ; AddtoZip Sumente leitura e 7 Depende de senha dd to Meus Documentos. zip Senhas: Enviar para + Dm Senha sormente letra: CC ã Becortar sei a Copiar Senha para acesso completo: sc Colar Criar atalho à Excluir Repormear Win 7 Low ) cm Ap Dea a plicar Para compartilhar a impressora, acesse o ícone “Impressoras”, clique com o botão direito sobre ela e novamente escolha “compartilhamento”. Compartilhe-a, dê um nome para ela e se quiser, estabeleça uma senha de acesso. Tudo pronto, agora basta ligar todos os micros e os recursos com partilhados aparecerão através do Windows Explorer, ou abrindo o ícone “Ambiente de Rede” que está na mesa de trabalho. Tudo que estiver com partilhado poderá ser acessado como se fizesse parte de cada um dos micros. Acessando discos e pastas compartilhados Existem 4 maneiras de acessar um disco rígido, CD-ROM ou pasta compartilhados. A primeira maneira, e a mais simples, é usar o ícone “Ambiente de Rede” que está na área de trabalho. 96 Guia completo de Re: Carlos E. Morimoto http are.net guiadohard Clicando sobre ele, surgirá uma janela mostrando todos os micros da rede que estão compartilhando algo, bastando clicar sobre cada um para acessar os compartilhamentos. sy A segunda maneira é semelhante à primeira, porém é mais rápida. Se por exemplo você quer acessar a pasta de documentos do micro 1, que está compartilhada como “documentos”, basta usar o comando “Executar...” do menu iniciar. A sintaxe da linha de comandos é Wnome do microinome do compartilhamento como em Wmicrofidocumentos. Isto abrirá uma janela mostrando todo o conteúdo da pasta compartilhada. Outras sintaxes para este comando são: Mmicro1 : para mostrar todos os compartilhamentos do micro indicado Mmicrofidocumentosimaria : mostra o conteúdo da pasta “maria” que está dentro do compartilhamento “documentos” que está no micro 1. [E [2 [=] Digite o nome de um programa. pasta, documento ou recurso da Intemet para que o!Windows o(a] abra. bis |MmicroT documento: EEE A terceira maneira é mapear uma unidade de rede através do Windows Explorer. Uma unidade de rede é um compartilhamento que é usado com se fosse uma unidade de disco local, recebendo uma letra, e aparecendo no Windows Explorer junto com as unidades de disco local. Mapear uma pasta ou disco compartilhado torna o acesso mais fácil e rápido. Para mapear uma unidade de rede, abra o Windows Explorer, clique em “Ferramentas” e, em seguida, em “Mapear unidade de Rede”. Na janela que surgirá, você deverá digitar o endereço de rede do recurso com partilhado, como em MmicrotiCD-ROM Favoritos | Ferramentas Ajuda Localizar + Acima, E Desconectar unidade de rede. 97
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved