Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Geometria Euclideana Plana, Notas de estudo de Geometria

Material do ensino à distância da UFS.

Tipologia: Notas de estudo

2011

Compartilhado em 17/06/2011

gilberto-da-mota-junior-3
gilberto-da-mota-junior-3 🇧🇷

4.3

(8)

3 documentos

Pré-visualização parcial do texto

Baixe Geometria Euclideana Plana e outras Notas de estudo em PDF para Geometria, somente na Docsity! Geometria Euclidiana Plana Por Almir Rogério Silva Santos e Humberto Henrique de Barros Viglioni UFS - 2011.1 6.4 Polígonos Inscritos em um Círculo . . . . . . . . . . 117 6.5 Como calcular o comprimento de um círculo? . . . . 124 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 126 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 126 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 126 LEITURA COMPLEMENTAR . . . . . . . . . . . 131 Capítulo 7: Funções Trigonométricas 133 7.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 Funções Trigonométricas . . . . . . . . . . . . . . . 134 7.3 Fórmulas de Redução . . . . . . . . . . . . . . . . . 136 7.4 Lei dos Cossenos . . . . . . . . . . . . . . . . . . . 140 7.5 Lei dos Senos . . . . . . . . . . . . . . . . . . . . . 143 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 148 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 148 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 148 LEITURA COMPLEMENTAR . . . . . . . . . . . 150 Capítulo 8: Área 151 8.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 152 8.2 Área . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.3 Área do Círculo . . . . . . . . . . . . . . . . . . . . 156 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 159 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 159 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 159 LEITURA COMPLEMENTAR . . . . . . . . . . . 163 Capítulo 9: Teorema de Ceva 165 9.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 166 9.2 O Teorema de Ceva . . . . . . . . . . . . . . . . . . 166 9.3 Pontos Notáveis de um Triângulo . . . . . . . . . . . 170 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 174 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 174 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 174 LEITURA COMPLEMENTAR . . . . . . . . . . . 175 Capítulo 10: Construções Elementares 177 10.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 178 10.2 Construções Elementares . . . . . . . . . . . . . . . 179 10.2.1 Perpendiculares . . . . . . . . . . . . . . . . 179 10.2.2 Paralelas . . . . . . . . . . . . . . . . . . . 181 10.2.3 Mediatriz . . . . . . . . . . . . . . . . . . . . 182 10.2.4 Bissetriz . . . . . . . . . . . . . . . . . . . . 183 10.2.5 O arco capaz . . . . . . . . . . . . . . . . . 184 10.2.6 Divisão de um segmento em partes iguais . . 187 10.2.7 Tangentes a um círculo . . . . . . . . . . . . 188 10.3 Problemas Resolvidos . . . . . . . . . . . . . . . . 189 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 200 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 200 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 200 LEITURA COMPLEMENTAR . . . . . . . . . . . 201 Capítulo 11: Expressões Algébricas 203 11.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 204 11.2 A 4a proporcional . . . . . . . . . . . . . . . . . . . 204 11.3 Expressões com raízes quadradas . . . . . . . . . . 207 11.4 O segmento áureo . . . . . . . . . . . . . . . . . . . 215 11.5 Expressões construtíveis . . . . . . . . . . . . . . . 216 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 218 PRÓXIMA AULA . . . . . . . . . . . . . . . . . . . . 219 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 219 LEITURA COMPLEMENTAR . . . . . . . . . . . 220 Capítulo 12: Construções Possíveis 221 12.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . 222 12.2 Divisão do círculo em n parte iguais . . . . . . . . . 222 12.3 Construções Possíveis Utilizando Régua e Compasso 225 12.3.1 O Princípio da Solução . . . . . . . . . . . . 229 12.3.2 Um critério de não-construtibilidade . . . . . 231 12.3.3 O critério geral de não-construtibilidade . . . 232 12.3.4 Polígonos regulares construtíveis . . . . . . . 234 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . 236 ATIVIDADES . . . . . . . . . . . . . . . . . . . . . . 236 LEITURA COMPLEMENTAR . . . . . . . . . . . 237 Geometria Euclidiana 1.1 Introdução Seja bem vindo caro aluno, daremos início aqui ao estudo axioma- tizado daquela geometria estudada no ensino fundamental e médio, a Geometria Euclideana Plana, porém com um enfoque diferente. Faremos uso do método utilizado por Euclides em seu livro Os Elementos, o método axiomático. A palavra “geometria” vem do grego geometrein (geo, “terra”, e me- trein, “medida”); originalmente geometria era a ciência de medição da terra. O historiador Herodotus (século 5 a.C.), credita ao povo egípcio pelo início do estudo da geometria, porém outras civiliza- ções antigas (babilônios, hindu e chineses) também possuiam muito conhecimento da geometria. Os Elementos de Euclides é um tratado matemático e geométrico consistindo de 13 livros escrito pelo matemático grego Euclides em Alexandria por volta de 300 a.C. Os 4 primeiros livros, que hoje pode ser pensando como capítulos, tratam da Geometria Plana conhecida da época, enquanto os demais tratam da teoria dos números, dos incomensuráveis e da geometria espacial. Esta aula está segmentada em duas partes. Na primeira parte vamos apresentar para você, caro aluno, os postulados de Euclides e veremos porquê se faz necessário introduzir outros postulados a fim de que se obtenha uma geometria sólida, sem “lacunas” nos resultados. 1.2 Um Pouco de História No livro 1 dos Elementos de Euclides, inicia-se o estudo da ge- ometria plana, hoje conhecida como Geometria Euclidiana Plana em sua homenagem. Inicialmente ele define os objetos geométricos cujas propriedades deseja-se estudar. São 23 definições, entre as quais encontramos as definições de ponto, reta, círculo, triângulo, retas paralelas, etc. Em seguida ele enuncia 5 noções comuns, que são afirmações admitidas como verdades óbvias. São elas: 14 Geometria Euclidiana Plana AULA 11 - Coisas iguais a uma mesma coisa são também iguais. 2 - Se iguais são adicionados a iguais, os totais obtidos são iguais 3 - Se iguais são subtraídos de iguais, os totais obtidos são iguais 4 - Coisas que coincidem uma com a outra são iguais 5 - O todo é maior do que qualquer uma de suas partes O que Euclides faz é construir axiomaticamente a geometria plana, através do método axiomático. Mas o que é o método axiomático? Se eu desejo convencê-lo que uma afirmação A1 é verdadeira, eu posso mostrar como esta afirmação segue logicamente de alguma outra afirmação A2, a qual você acredita ser verdadeira. No en- tanto, se você não acredita em A2, eu terei que repetir o processo utilizando uma outra afirmação A3. Eu devo repetir este processo várias vezes até atingir alguma afirmação que você acredite ser verdadeira, um que eu não precise justificar. Esta afirmação tem o papel de um axioma (ou postulado). Caso essa afirmação não exista, o processo não terá fim, resultando numa sequência suces- siva de demonstrações. Assim, existem dois requisitos que devem ser cumpridos para que uma prova esteja correta: Requisito 1: Aceitar como verdadeiras certas afirmações chamadas “axiomas” ou “postulados”, sem a necessidade de prova. Requisito 2: Saber como e quando uma afirmação segue logicamente de outra. O trabalho de Euclides destaca-se pelo fato de que com apenas 5 postulados ele foi capaz de deduzir 465 proposições, muitas com- plicadas e não intuitivas. A seguir apresentamos os 5 postulados de Euclides. Postulado 1. Pode-se traçar uma (única) reta ligando quaisquer dois pontos. 15 Geometria Euclidiana Postulado 2. Pode-se continuar (de uma única maneira) qualquer reta finita continuamente em uma reta. Postulado 3. Pode-se traçar um círculo com qualquer centro e com qualquer raio. Postulado 4. Todos os ângulos retos são iguais. Algumas observações antes do Postulado 5 merecem atenção. • Com apenas estes 4 postulados Euclides provou 28 proposições • Nos Postulados 1 e 2 os termos entre parênteses não foram empregados por Euclides; porém, pela forma como ele os aplicam, deduz-se que estes termos foram implicitamente as- sumidos. • Euclides define ângulos sem falar em medida e ângulo reto como um ângulo que é igual ao seu suplementar. Daí, a necessidade do Postulado 4. A primeira proposição do Livro I segue abaixo: Proposição 1. Existe um triângulo equilátero com um lado igual a um segmento de reta dado. Demonstração • Passo 1: Pelo Postulado 3, podemos traçar um círculo com centro em uma extremidade do segmento de reta e raio igual a este segmento. • Passo 2: Como no passo 1, podemos traçar um outro círculo com centro na outra extremidade e mesmo raio. • Passo 3: Tome um dos pontos de interseção dos dois círculos como o terceiro vértice do triângulo procurado. 16 Geometria Euclidiana Plana AULA 1Esta foi a forma como Euclides enunciou o Postulado 5. Na sim- bologia atual podemos representar a Proposição 28 da seguinte forma α+ β < 180◦ ⇒ m ∩ n 6= ∅ (1.1) Note que a afirmação 1.1 é equivalente a m ∩ n = ∅ ⇒ α+ β ≥ 180◦. Porém, se α+β > 180◦ teríamos que a soma dos suplementares de α e β seria < 180◦, implicando, pelo Postulado 5, que m ∩ n 6= ∅; contradição! Logo, o Postulado 5 é equivalente a afirmação m ∩ n = ∅ ⇒ α+ β = 180◦, que é exatamente a recíproca da Proposição 28. Muitos acreditavam que quando Euclides chegou no Postulado 5 não soube como demonstrá-lo e então resolveu deixá-lo como pos- tulado. Com certeza Euclides deve ter pensado muito até aceitar que teria que acrescentar este postulado, visto que diferentemente dos demais, este parece muito mais com um teorema que com uma simples afirmação que podemos aceitá-la sem demonstração. 1.3 Geometria de Incidência A partir desta seção, caro aluno, iremos iniciar nosso estudo axio- mático da Geometria Euclidiana Plana. Nas seções anteriores, vi- mos que os postulados de Euclides não são suficientes para demon- strar todos os resultados da geometria plana. De fato, vimos que nos Elementos de Euclides existem lacunas que não são possíveis preenchê-las somente com o conteúdo dos Elementos. O que iremos fazer neste curso é axiomatizar a geometria de tal forma que não deixemos lacunas. Iremos usar um conjunto de axiomas que serão suficientes para demonstrar todos os resultados conhecidos desde o ensino fundamental. 19 Geometria Euclidiana Não podemos definir todos os termos que iremos usar. De fato, para definir um termo devemos usar um outro termo, e para definir esses termos devemos usar outros termos, e assim por diante. Se não fosse permitido deixar alguns termos indefinidos, estaríamos envolvidos em um processo infinito. Euclides definiu linha como aquilo que tem comprimento sem largura e ponto como aquilo que não tem parte. Duas definições não muito úteis. Para entendê-las é necessário ter em mente uma linha e um ponto. Consideraremos alguns termos, chamados de primitivos ou elementares, sem precisar defini-los. São eles: 1. ponto; 2. reta; 3. pertencer a (dois pontos pertencem a uma única reta); 4. está entre (o ponto C está entre A e B); O principal objeto de estudo da Geometria Euclidiana Plana é o plano. O plano é constituído de pontos e retas. 1.3.1 Axiomas de Incidência Pontos e retas do plano satisfazem a cinco grupos de axiomas. O primeiro grupo é constituído pelos axiomas de incidência. Axioma de Incidência 1: Dados dois pontos distintos, existe uma única reta que os contém. Axioma de Incidência 2: Em toda reta existem pelo menos dois pontos distintos. Axioma de Incidência 3: Existem três pontos distintos com a propriedade que nenhuma reta passa pelos três pontos. 20 Geometria Euclidiana Plana AULA 1 Figura 1.4: Figura 1.5: Observação Destes três axiomas deduzimos alguns fatos simples, porém importantes: • Toda reta possui pelo menos dois pontos. • Não existe uma reta contendo todos os pontos. • Existem pelo menos três pontos no plano. Definição 1.1. Duas retas intersectam-se quando elas possuem um ponto em comum. Se elas não possuem nenhum ponto em comum, elas são ditas paralelas. Figura 1.6: r e s se intersectam no ponto P e m e n são paralelas. 21 Geometria Euclidiana Escreveremos A ∗ B ∗ C para dizer que o ponto B está entre os pontos A e C. Axioma de ordem 1: Se A ∗ B ∗ C, então A,B e C são pontos distintos de uma mesma reta e C ∗B ∗A. Axioma de ordem 2: Dados três pontos distintos de uma reta, um e apenas um deles está entre os outros dois. Figura 1.8: Este axioma assegura que uma reta não é um círculo, onde não temos a noção bem clara de um ponto está entre outros dois. (Ver figura 1.9.) Figura 1.9: Axioma de ordem 3: Dados dois pontos distintos B e D, existem pontos A,C e E pertencentes à reta contendo B e D, tais que A ∗B ∗D,B ∗ C ∗D e B ∗D ∗ E. Este axioma assegura que uma reta possui infinitos pontos. Definição 1.2. Sejam dois pontos distintos A e B, o segmento AB é o conjunto de todos os pontos entre A e B mais os pontos 24 Geometria Euclidiana Plana AULA 1 Figura 1.10: extremos A e B. Definição 1.3. A semi-reta com origem em A e contendo B é o conjunto dos pontos C tais que A ∗ B ∗ C mais o segmento AB, sendo representada por SAB. Figura 1.11: À esquerda o segmento AB e à direita a semi-reta SAB. Proposição 1.4. Para quaisquer dois pontos A e B tem-se: a) SAB ∪ SBA = reta determinada por A e B. b) SAB ∩ SBA = AB. Demonstração a) Seja m a reta determinada por A e B. Da definição de semi- reta, segue imediatamente que SAB ∪ SBA ⊂ m. Se C per- tence à reta m, então o Axioma de Ordem 2 implica somente uma das três alternativas: 1) A ∗ C ∗B 2) C ∗A ∗B 3) A ∗B ∗ C No caso 1, C pertence ao segmento AB; no caso 2 C pertence à semi-reta SBA e no caso 3, C pertence a SAB. Em qualquer caso, C pertence a SAB ∪ SBA. Daí, m ⊂ SAB ∪ SBA. 25 Geometria Euclidiana b) Deixamos a prova deste ítem como exercício. Definição 1.4. Seja uma reta m. Dois pontos distintos fora de m, A e B, estão em um mesmo lado da reta m se o segmento AB não a intersecta, caso contrário dizemos que A e B estão em lados opostos de m. O conjunto dos pontos de m e dos pontos C tais que A e C estão em um mesmo lado da reta m é chamado de semi-plano determinado por m contendo A e será representado por Pm,A. Figura 1.12: A e B estão no mesmo lado de m. B e C estão em lado opostos de m. Axioma de ordem 4: Para toda reta l e para qualquer três pontos A,B e C fora de l, tem-se: i) Se A e B estão no mesmo lado de l e B e C estão no mesmo lado de l, então A e C estão no mesmo lado de l. ii) Se A e B estão em lados opostos de l e B e C estão em lados opostos de l, então A e C estão no mesmo lado de l. Corolário 1.1. Se A e B estão no mesmo lado de l e B e C estão em lados opostos de l, então A e C estão em lados opostos de l. Ver figura 1.12. Exercício 1.2. Prove o Corolário 1.1. 26 Geometria Euclidiana Plana AULA 1RESUMO ¨ Nesta aula você conheceu os 5 postulados de Euclides. Você viu que na prova da Proposição 1 dos Elementos de Euclides, ele fez uso de afirmações que não estavam explícitas em seus 5 postulados. Você viu também que o Postulado 5 dos Elementos nada mais é do que a recíproca da Proposição 28, o que gerou dúvida entre muitos matemáticos da época se o Postulado 5 era mesmo um postulado ou uma proposição que Euclides não sabia prová-la. Além disso, você viu os dois primeiros grupos de axiomas, de incidência e or- dem, que permitirá tapar os “buracos” deixados por Euclides nos Elementos. Finalmente, você também viu o Teorema de Pasch que é uma consequência dos axiomas de ordem. PRÓXIMA AULA ¨ Na próxima aula daremos continuidade a construção da geometria plana axiomatizada. Introduziremos mais dois grupos de axiomas, os axiomas de medição de segmentos e de ângulos. ATIVIDADES ¨ 1. Quais das afirmações abaixo são verdadeiras? ( ) Por definição, uma reta m é “paralela"a uma reta l se para quaisquer dois pontos P e Q emm, a distância per- pendicular de P a l é a mesma distância perpendicular de Q a l. ( ) Foi desnecessário para Euclides assumir o postulado das paralelas porque o Francês Legendre o provou. 29 Geometria Euclidiana ( ) “Axioma” ou “postulados” são afirmações que são as- sumidas, sem justificativas, enquanto que “teoremas” ou “proposições” são provadas usando os axiomas. ( ) A ∗B ∗ C é logicamente equivalente a C ∗B ∗A. ( ) Se A, B e C são pontos colineares distintos, é possível que ambos A ∗B ∗ C e A ∗ C ∗B ocorram. 2. Sejam dois pontos A e B e um terceiro ponto C entre eles. É possível provar que C pertecente a reta que passa por A e B utilizando somente os 5 postulados de Euclides? 3. É possível provar a partir dos 5 postulados de Euclides que para toda reta l existe um ponto pertencente a l e um ponto que não pertence a l? 4. É possível provar a partir dos 5 postulados de Euclides que pontos e retas existem? 5. Para cada par de axiomas de incidência construa um mod- elo no qual estes dois axiomas são satisfeitos mas o terceiro axioma não. (Isto mostra que os três axiomas são indepen- dentes, no sentido qeu é impossível provar qualquer um deles dos outros dois.) 6. Verifique se são planos de incidência os pares (P,R) seguintes: (a) P = R2 e R = {(x, y) ∈ R2; ax+ by + c = 0, com ab 6= 0}. (b) P = R2 e R = conjunto dos círculos em R2. (c) P = conjunto das retas em R3 e R = conjunto dos planos em R3. 7. Construa exemplos distintos de plano de incidência com o mesmo número de pontos, ou seja, o conjunto P será o mesmo porém R será diferente. 30 Geometria Euclidiana Plana AULA 18. Mostre que não existe um exemplo de um plano de incidência com 6 pontos, em que todas as retas tenham exatamente 3 pontos. 9. Quantos pontos comuns a pelo menos duas retas pode ter um conjunto de 3 retas no plano? E um conjunto de 4 retas do plano? E um conjunto de n retas do plano? 10. Dizemos quem três ou mais pontos são colineares quando to- dos pertencem a uma mesma reta. Do contrário, dizemos que eles são não colineares. Mostre que três pontos não colineares determinam três retas. Quantas retas são determinadas por quatro pontos sendo que quaisquer três deles são não colin- eares? E se forem 6 pontos? E se forem n pontos? 11. Prove que a união de todas as retas que passam por um ponto A é o plano. 12. Dados A ∗ B ∗ C e A ∗ C ∗ D, prove que A, B, C e D são quatro pontos colineares distintos. 13. Dado A ∗B ∗ C. Prove que SAB = SAC . LEITURA COMPLEMENTAR ¨ 1. BARBOSA, J. L. M., Geometria Euclidiana Plana. SBM. 2. EUCLIDES,Os Elementos. Unesp. Tradução: Irineu Bicudo. 3. GREENBERG, M. J., Euclidean and Non-Euclidean Geome- tries: Development and History. Third Edition. W. H. Free- man. 4. POGORELOV, A. V., Geometria Elemental. MIR. 5. MOISE, E. E., Elementary Geometry from an Advanced Stand- point. Third edition. Addison-Wesley. 31 Axiomas de Medição 2.1 Introdução Olá, caro aluno. Espero que tenha gostado da nossa primeira aula. Nela apresentamos os cinco postulados de Euclides, bem como a primeira proposição dos Elementos para ilustrar a necessidade de modificação de seus axiomas para obter uma geometria sólida e consistente, com toda afirmação devidamente justificada. Vimos também os axiomas de incidência e ordem. Note que, com apenas o conjunto de axiomas apresentados na primeira aula, ainda não temos a geometria euclidiana plana que conhecemos. O que estamos fazendo é introduzindo as regras (axi- omas) a serem seguidas pelos objetos de estudo da geometria plana: plano, reta e ponto. O próximo passo é aprender a medir o comprimento de um seg- mento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua graduada é um dos mais conhecidos. Aprendemos com a experiência que para medir o comprimento de um segmento AB com uma régua graduada, basta colocar a régua graduada sobre o segmento AB, verificar a quais números correspondem o ponto A e o ponto B e então o módulo da diferença será o com- primento do segmento AB. Aprendemos também que se um ponto C está entre A e B, então o comprimento de AB é a soma dos comprimentos dos segmentos AC e CB. Veremos nesta aula como introduzir estas noções axiomaticamente. 2.2 Axiomas de Medição de Segmentos A maneira como procedemos para medir segmentos é regida pelos seguintes axiomas: Axioma de medição 1: A todo segmento corresponde um número maior ou igual a zero. Este número é zero se e somente se as ex- tremidades coincidem. 34 Geometria Euclidiana Plana AULA 2Está implícito no enunciado do axioma, a escolha de uma unidade de medida que será fixada ao longo de nosso curso. O número a que se refere o axioma é denominado de comprimento do segmento ou distância entre os pontos que define o segmento. Axioma de medição 2: Os pontos de uma reta podem ser sem- pre colocados em correspondência biunívoca com os números reais, de modo que o módulo da diferença entre estes números meça a distância entre os pontos correspondentes. Fixada uma correspondência, o número que corresponde a um ponto da reta é denominado coordenada daquele ponto. Portanto, se a e b são as coordenadas dos pontos A e B, respectivamente, então o comprimento do segmento AB, denotado por AB, é igual a AB = |a− b|. Axioma de medição 3: Se A ∗ C ∗B, então AC + CB = AB. É importante observar aqui que o axioma não diz que se AC + CB = AB então A ∗ C ∗ B. O que você acha? É verdadeira essa afirmação? O Axioma de Medição 2 diz apenas que existe uma bijeção entre os pontos de uma reta e os números reais, porém não fixa nenhuma restrição para a bijeção. O Axioma de Medição 3, garante que a bijeção não será arbitrária, ela tem que satisfazer a uma certa ordem. É isto que diz a próxima proposição. Proposição 2.6. Se em uma semi-reta SAB considerarmos um segmento AC com AC < AB, então A ∗ C ∗B. Demonstração Sabemos que, pelo Axioma de Ordem 2, só pode ocorrer uma das seguintes possibilidades: B ∗A ∗C, A ∗B ∗C ou A ∗ C ∗B. 35 Axiomas de Medição Vamos mostrar que não pode ocorrer a primeira nem a segunda possibilidade. Como A é a origem da semi-reta SAB, então não é verdade que B ∗A ∗ C, caso contrário teríamos C não pertenceria a esta semi- reta. Se A ∗ B ∗ C, então, pelo Axioma de Medição 3 teríamos AB+BC = AC, implicando que AB < AC, que é uma contradição com a hipótese AC < AB. Logo, só pode ocorrer A ∗ C ∗B. Teorema 2.1. Sejam A,B e C pontos distintos de uma reta cujas coordenadas são, respectivamente, a, b e c. Então A ∗ C ∗ B se e somente se o número c está entre a e b. Demonstração Suponha A ∗ C ∗ B. Pelo Axioma de Medição 3 e pela definição de comprimento, tem-se que AC + CB = AB, implicando que |c− a|+ |b− c| = |a− b|. Sem perda de generalidade, podemos supor que a < b. Assim, obtemos que |c− a| < b− a e |b− c| < b− a. Isto implica que c− a < b− a e b− c < b− a. Logo, a < c < b. Suponha agora que a < c < b. Então b− a = b− c+ c− a, ou seja, |b− a| = |b− c|+ |c− a|. Segue daí que AC + CB = AB e então AC < AB e CB < AB. Se A,B e C pertencem à mesma semi-reta determinada por A, 36 Geometria Euclidiana Plana AULA 2Usaremos a notação  quando não houver dúvida a que ângulo estaremos nos referindo. Se dois ângulos BÂD e CÂD possuem um lado SAD em comum e os outros dois lados SAB e SAC são semi-retas distintas de uma mesma reta, os ângulos são ditos suplementares. Figura 2.3: Os ângulos BÂC e CÂD são suplementares. Um ângulo é dito raso se os lados são semi-retas distintas de uma mesma reta. Dois ângulos sumplementares formam um ângulo raso. Figura 2.4: O ângulos BÂC é raso. Introduzimos o conceito de ângulo sem a necessidade de falar em medida de ângulo, “graus”, por exemplo. A maneira de introduzir medidas aos ângulos é através dos próximos axiomas. Axioma de Medição 4: A todo ângulo corresponde um único número real maior ou igual a zero. Este número é zero se e so- mente se os lados do ângulo coincidem. Uma semi-reta divide um semi-plano se ela pertence ao semi-plano 39 Axiomas de Medição e sua origem pertence à reta que o determina. Axioma de Medição 5: Existe uma bijeção entre as semi-retas de mesma origem que dividem um dado semi-plano e os números entre zero e 180, de modo que a diferença entre os números é a medida do ângulo formado pelas semi-retas correspondentes. Figura 2.5: A medida de um ângulo AÔB será denotada pelo próprio ângulo. Assim, AÔB poderá indicar o ângulo ou a medida deste ângulo, mas sempre estará claro no contexto se estaremos nos referindo ao ângulo ou a sua medida. Observe que o ângulo raso mede 180◦ graus. Definição 2.4. Uma semi-reta SOC divide o ângulo AÔB se o segmento AB intercecta SOC . Se uma semi-reta SOC divide o ân- gulo AÔB de tal modo que AÔC = CÔB, dizemos que SOC é a bissetriz do ângulo AÔB. Axioma de Medição 6: Se uma semi-reta SOC divide um ângulo AÔB, então AÔB = AÔC + CÔB. Definição 2.5. Dois ângulos AÔB e CÔD são ditos opostos pelo vértice se os pares de lados (SOA, SOD) e (SOB, SOC) são semi- retas distintas de uma mesma reta. Note que ângulos opostos pelo 40 Geometria Euclidiana Plana AULA 2 Figura 2.6: SOC divide o ângulo AÔB. vértice têm o mesmo suplemento. Portanto, ângulos opostos pelo vértice têm a mesma medida. Figura 2.7: CÔD e AÔB são opostos pelo vértice. Definição 2.6. Um ângulo cuja medida é 90◦ é chamado ângulo reto. Se duas retas se intersectam formando um ângulo reto, dize- mos que as retas são perpendiculares. Se a soma das medidas de dois ângulos é 90◦, dizemos que os ângulos são complementares. Teorema 2.3. Por qualquer ponto de uma reta passa uma única perpendicular a esta reta. Demonstração A existência é garantida pelo Axioma de Medição 5. (Por quê?) Suponha então que existam duas perpendiculares r e r′ a uma reta m passando pelo ponto A. Assim, r e r′ formam um ângulo α em 41 Axiomas de Medição 4. Existem pontos A, B e C tais que AB = 5, BC = 3 e AC = 1? 5. SejamM , A e B pontos distintos situados sobre uma mesma reta. Se a = MA/MB diz-se que M divide AB na razão a. (a) Dado qualquer número real positivo a mostre que existe um único pontoM ∈ AB tal queM divide AB na razão a. (b) Dado qualquer número real positivo a 6= 1, mostre que existe um único ponto M na reta determinada por A e B, que não pertence a AB e que divide AB na razão a. Porque o caso a = 1 teve que ser excluído? 6. Sejam M , N , A e B pontos distintos sobre uma mesma reta, sendo que M ∈ AB e que N 6∈ AB. Suponha que MA MB = NA NB = a. Neste caso, dizemos que M e N dividem harmonicamente o seguimento AB. (a) Quando a > 1, determine as posições relativas dos qua- tro pontos. (b) Faça o mesmo para o caso em que 0 < a < 1. (c) Mostre que 2 AB = 1 AM ± 1 AN . (d) Se O é o ponto médio de AB. Mostre que OA 2 = OM ·ON. 7. Qual a medida da diferença entre o suplemento de um ângulo e seu complemento. 8. (a) Qual o ângulo formado entre o ponteiro dos minutos e das horas quando são 12 horas e 30 minutos? 44 Geometria Euclidiana Plana AULA 2(b) Exatamente às 12 horas um ponteiro estará sobre o outro. A que horas voltará a ocorrer que os dois pon- teiros formem um ângulo de 0o. 9. Um polígono é uma figura formada por uma sequência de pontos A1, A2, . . . , An e pelos segmentos A1A2, A2A3, . . . , An−1An e satisfazendo as condições (a) An = A1; (b) os lados da poligonal se intercectam somente em suas extremidades; (c) cada vértice é extremidade de dois lados; (d) dois lados com mesma extremidade não pertecem a uma mesma reta. O segmento ligando vértices não consecutivos de um polígono é chamado uma diagonal do polígono. Faça o desenho de um polígono de seis lados. Em seguida desenhe todas as suas diagonais. Quantas diagonais terá um polígono de 20 lados? E de n lados? 10. São dados quatro pontos A, B, C e D. É também sabido que AB + BC + CD + DA e 2AC são iguais. O que você pode afirmar sobre a posição relativa dos quatro pontos? 11. Mostre que as bissetrizes de um ângulo e do seu suplemento são perpendiculares. 12. Sejam m e n duas retas. Mostre que se m está contida em um dos semi-planos determinados por n então ou m = n ou m e n não se intersectam. 13. Ao longo de meia hora o ponteiro dos minutos de um relógio descreve um ângulo raso (ou seja, o ângulo entre sua posição inicial e sua posição final é um ângulo raso). Quanto tempo ele leva para descrever um ângulo de 60◦ graus? 45 Axiomas de Medição 14. De quantos graus move-se o ponteiro dos minutos enquanto o ponteiro das horas percorre um ângulo raso? LEITURA COMPLEMENTAR ¨ 1. BARBOSA, J. L. M., Geometria Euclidiana Plana. SBM. 2. EUCLIDES,Os Elementos. Unesp. Tradução: Irineu Bicudo. 3. GREENBERG, M. J., Euclidean and Non-Euclidean Geome- tries: Development and History. Third Edition. W. H. Free- man. 4. POGORELOV, A. V., Geometria Elemental. MIR. 5. MOISE, E. E., Elementary Geometry from an Advanced Stand- point. Third edition. Addison-Wesley. 46 Geometria Euclidiana Plana AULA 33.3 Congruência de Triângulos Exatamente como definimos congruência para segmentos em ter- mos de comprimento, definimos congruência entre ângulos em ter- mos de medida. Isto é, se dois ângulos AB̂C e DÊF possuem a mesma medida, então diremos que os ângulos são congruentes, e indicaremos por AB̂C = DÊF. Da mesma forma que a relação de congruência para segmentos é uma relação de equivalância, a relação de congruência para ângulos também é uma relação de equivalência. Note que se dois ângulos suplementares são congruentes, então cada um deles é um ângulo reto. Além disso, temos também que dois ângulos opostos pelo vértice são congruentes, já que possuem o mesmo suplemento. Definição 3.2. Dois triângulos ABC e DEF são congruentes se existir uma correspondência biunívoca entre seus vértices tal que os lados e ângulos correspondentes sejam congruentes. Indicaremos por ABC = DEF para dizer que os dois triângulos são congruentes e a correspondência é dada por A ↔ D, B ↔ E, C ↔ F. Neste caso, teremos seis congruências induzidas sobre os lados e os ângulos. AB = DE, BC = EF, CA = FD, 49 Congruência e  = D̂, B̂ = Ê, Ĉ = F̂ . De fato, para que dois triângulos sejam congruentes é necessário que as seis congruências acima sejam satisfeitas. Porém, se que- remos verificar se dois triângulos são congruentes será necessário verificar somente algumas delas. Isto é o que diz o próximo axioma, conhecido também como o primeiro caso de congruência de triângulos. Axioma de Congruência 1 Sejam ABC e DEF dois triângulos. Se AB = DE,AC = DF e  = D̂, então ABC = DEF. Figura 3.1: Este axioma é também conhecido como o caso LAL (lado, ângulo, lado) de congruência de triângulos. Definição 3.3. Um triângulo é dito isósceles se possui dois lados conguentes. Estes lados são chamados de laterais e o terceiro de base. Os ângulos opostos as laterais são chamados de ângulos da base. Proposição 3.7. Os ângulos da base de um triângulo isósceles são congruentes. 50 Geometria Euclidiana Plana AULA 3 Figura 3.2: ABC é um triângulo isósceles com base AB = AC. Demonstração Considere a correspondência entre os vértices de um triângulo isósceles ABC : A ↔ A B ↔ C D ↔ B Por hipótese, segue que AB = AC, AC = AB e  = Â. Pelo Axioma de Congruência 1, segue que ABC = ACB. Isto implica que B̂ = Ĉ. Observe que a prova anterior mostra que o triângulo ABC é con- gruente ao triângulo ACB. Caso você tenha dificuldades em acom- panhar a prova, você pode desenhar duas cópias do triângulo e repetir a prova para estes dois triângulos. A prova de Euclides para este resultado aparece no início dos Elementos e é longa. A prova acima é devida, essencialmente, ao grande geômetra grego Pappus de Alexandria (350 d.C.), embora ele não tenha usado a formulação do Axioma de Congruência 1 que utilizamos aqui. Corolário 3.1. Todo triângulo equilátero possui os três ângulos congruentes. Exercício 3.1. Prove o Corolário 3.1. 51 Congruência Figura 3.6: Altura Demonstração Seja ABC um triângulo com AB = AC. Seja AD a mediana relativamente à base BC. Considere os triângulos ABD e ACD. Como D é o ponto médio de BC, então BD = CD. Além disso, ABC é um triângulo isósceles, o que implica que AB = AC e B̂ = Ĉ. Logo, os triângulos ABD e ACD são tais que AB = AC,BD = CD e AB̂D = AĈD. Pelo caso LAL de congruência de triângulos, segue que ABD = ACD. Em particu- lar, BÂD = CÂD, o que implica que AD é a bissetriz do ângulo BÂC. Além disso, temos AD̂B = AD̂C, e como estes ângulos são suplementares, segue que AD̂B = AD̂C = 90◦. Figura 3.7: Teorema 3.3 (Caso LLL). Se dois triângulos têm três lados cor- 54 Geometria Euclidiana Plana AULA 3respondentes congruentes então os triângulos são congruentes. Figura 3.8: Altura Demonstração Sejam ABC e DEF triângulos tais que AB = DE,BC = EF e AC = DF. A idéia da prova é construir um triângulo AGC, com o ponto G no lado oposto da reta que contém DB, tal que AGC = DEF. Então mostraremos que ABC = AGC. • Passo 1: Pelo Axioma de Medição de Ângulo 2, existe uma semi-reta SAQ no semi-plano oposto ao que contém C, tal que BÂQ = D̂. • Passo 2: Na semi-reta SAQ tome um ponto G tal que AG = DF. • Passo 3: Pelo 1◦ caso de congruência de triângulos, segue que AGB = DEF. • Passo 4: O segmento CG intercepta AB no ponto H, pois estão em lados opostos. • Passo 5: Note que AG = DF = AC. Assim, o triângulo ACG é isósceles e então AĜC = AĈG. 55 Congruência • Passo 6: Da mesma forma, concluímos que o triângulo BCG é isósceles com BĈG = BĜC. • Passo 7: Porém, AĜB = AĜC + CĜB = AĈG+GĈB = AĈB. Portanto, podemos aplicar o Axioma de Congruência 1 para con- cluir que ACB = AGB. Mas como AGB = DFE, segue que ABC = DEF. Este teorema é conhecido como o 3◦ Caso de Congruência de Triân- gulo, ou caso LLL (lado, lado, lado) de congruência de triângulos. 56 AULA 4Geometria sem o Postulado das Paralelas META: Introduzir o Teorema do Ângulo Externo e suas consequências. OBJETIVOS: Ao final da aula o aluno deverá compreender como 1. aplicar o Teorema do Ângulo Externo; 2. identificar triângulos retângulos congruentes. 3. aplicar o Teorema do Ângulo Externo e a Desigualdade Tri- angular para a demonstração do Teorema de Saccheri-Legendre. PRÉ-REQUISITOS Para um bom acompanhamento desta aula o aluno deverá ter com- preendido todos os casos de congruência de triângulos da aula an- terior. Geometria sem o Postulado das Paralelas 4.1 Introdução Observe, caro aluno, que já estamos na Aula 4 e até agora ainda não introduzimos o postulado das paralelas, além daquela forma introduzida na primeira aula. Até agora todos os nossos resulta- dos demonstrados até aqui não foi necessário usar o postulado das paralelas. Portanto, qualquer modelo de geometria que seja válido os nossos axiomas, incidência, ordem, medição e de congruência, os resultados provados até esta aula também será válido nesta ge- ometria. O que faremos nesta aula é demonstrar mais alguns resultados, al- guns bem conhecidos de vocês e outros nem tanto. O que estamos interessados é mostrar que certas questões que podem ser respon- didas na Geometria Euclidiana Plana não podem ser respondidas em uma geometria em que não seja válido o postulado das para- lelas, simplesmente porque seus axiomas não nos dá informações suficientes. Veremos nesta aula alguns resultados que serão muito úteis nas aulas seguintes, sendo o seu entendimento crucial para o bom en- caminhamento do curso. Por exemplo, o Teorema do Ângulo Inte- rior alternado, que nos dá condições suficientes para que duas retas sejam paralelas, e o Teorema do Ângulo Exterior que relaciona os ângulo internos de um triângulo com seus ângulos exteriores. Todos os estudantes que algum dia estudou geometria plana na es- cola, sabem que a soma dos ângulos internos de qualquer triângulo é sempre igual a 180◦. Nesta aula, veremos que até aqui só temos condições de mostrar que a soma destes ângulos é no máximo 180◦, sendo igualdade provada somente com o postulado das paralelas. 4.2 Teorema do Ângulo Interior Alternado O próximo teorema requer uma definição. Definição 4.1. Seja t uma reta transversal a duas retas m e n, 60 Geometria Euclidiana Plana AULA 4com t interceptando m em E e n em B. Escolha pontos D e F em m tais que D ∗E ∗F, e pontos A e C em n tais que A e D estejam no mesmo lado de t e A ∗ B ∗ C. Os ângulos DÊB,FÊB,AB̂E e CB̂E são chamados ângulos interiores. Os pares de ângulos (AB̂E,F ÊB) e (DÊB,CB̂E) são chamados de pares de ângulos interiores alternados. Figura 4.1: α e β são ângulo internos alternados. Definição 4.2. Duas retas são ditas paralelas se elas não se inter- sectam. Teorema 4.1. (Teorema do ângulo interior alternado): Se duas retas m e n são cortadas por uma reta transversal t formando um par de ângulos interiores alternados congruentes, então as duas retas são paralelas. Demonstração: Suponha que m ∩ n = {G} e DÊB = CB̂E. Podemos supor queG está no mesmo lado de F e C (ver figura 4.2). Existe um ponto H na semi-reta SED, tal que HE = BG. Con- sidere os triângulos HEB e GBE. Como HE = BG,EB = BE e HÊB = GB̂E, segue do 1◦ Caso de Congruência de Triângulos que 61 Geometria sem o Postulado das Paralelas Nós estamos acostumados à Geometria Euclidiana onde de fato existe uma única reta paralela a uma reta dada passando por um ponto fora dela. Neste ponto de nosso curso, ainda não é possível provar este resultado. Também estamos acostumados à recíproca do Teorema do Ângulos Internos Alternados: “se duas retas são paralelas, então os pares de ângulos interiores alternados formados por uma transversal são congruentes.” Para obtermos estes resul- tados só será possível com o axioma das paralelas, que veremos na próxima aula. 4.3 Teorema do Ângulo Exterior Considere a definição seguinte antes do próximo teorema. Definição 4.3. Os ângulos internos de um triângulo são os ângu- los formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado ângulo exterior do triângulo. Todo triângulo possui exatamente seis ângulos externos. Esses seis ângulos formam três pares de ângulos congruentes. Figura 4.4: AB̂C, BÂC e AĈB são ângulo internos. α, β e γ são ângulos externos. 64 Geometria Euclidiana Plana AULA 4Teorema 4.2. (Teorema do Ângulo Exterior): Um ângulo externo de um triângulo é maior que qualquer ângulo interno não adjacente a ele. Figura 4.5: Demonstração Sejam ABC um triângulo e AĈD um ângulo externo. (ver figura) Vamos mostrar que AĈD > BÂC. SeAĈD = BÂC, então as retas contendoA eB e contendo CD são paralelas, contradizendo a hipótese que B é oponto de interseção destas retas. Suponha que BÂC > AĈD. Então existe uma semi-reta SAE que divide BÂC e AĈD = CÂE. Seja F o ponto de interseção de BC com SAE . Pelo Teorema do ângulo alternado, as retas contendo AF e CD são paralelas, contradizendo o fato que elas intersectam- se no ponto F. Portanto, AĈD > BÂC. Para mostrar que AĈD > CB̂A, o raciocínio é análogo, utilizando- se o ângulo oposto pelo vértice a AĈD. O Teorema do Ângulo Externo aparece na 16a Proposição dos Ele- mentos de Euclides. Sua prova continha um “buraco”, que com os nossos axiomas é possível corrigi-lo. Euclides foi levado pela figura. Ele considerou o ponto médio M de AC e um ponto N na semi- reta SBM tal que BM = MN. Daí ele assumui erroneamente, com base no diagrama, que N está no interior do ângulo AĈD. Como AMB = CMN (caso LAL de congruência de triângulos), Euclides 65 Geometria sem o Postulado das Paralelas concluiu corretamente que AĈD > BÂC. Você consegue corrigir o argumento de Euclides ? Como consequência do Teorema do Ângulo Exterior, podemos provar o 4◦ caso de congruência de triângulos. Proposição 4.9 (4◦ Caso de Congruência de Triângulos). Sejam ABC e DEF triângulos satisfazendo AC = DF,  = D̂ e B̂ = Ê. Então ABC = DEF. Figura 4.6: Demonstração Seja G um ponto da semi-reta SDE , tal que DG = AB. Pelo caso LAL temos ABC = DGF. Isto implica que DĜF = B̂ = DÊF. Como G pertence a SDE temos três casos: D ∗G∗E,D ∗E ∗G ou E = G. Se D ∗G∗E, então DĜF é um ân- gulo externo do triângulo FGE. Do Teorema do Ângulo Externo, segue que DĜF > DÊF, o que é falso. Se D ∗ E ∗G então DÊF é um ângulo externo do triângulo FGE. Novamente, do Teorema do Ângulo Externo, segue que DÊF > EĜF, o que é falso. Logo, G = F e ABC = DEF. Definição 4.4. Um triângulo é dito retângulo se um dos ângulos internos é reto. O lado oposto ao ângulo reto é denominado de hipotenusa e os outros dois de catetos. Pelo Teorema do Ângulo Interior Alternado, segue que um triân- gulo tem no máximo um ângulo reto. Mais ainda, pelo Teorema do Ângulo Externo um triângulo retângulo possui dois ângulos agudos. 66 Geometria Euclidiana Plana AULA 4Vamos mostrar que AC < AB. Mas se este não fosse o caso, teríamos AC > AB, que pela proposição anterior implicaria B̂ > Ĉ, o que é falso. Logo, só resta AC < AB. Pelas proposições anteriores segue que a hipotenusa de um triân- gulo retângulo é maior que os outros dois catetos. Disto podemos provar a seguinte proposição Proposição 4.12. O menor segmento unindo uma reta a um ponto fora dela é o segmento perpendicular. Figura 4.9: Demonstração Seja P um ponto fora de uma reta r. Considere o ponto Q interseção da reta que passa por P e perpendicular a r, denominado pé da perpendicular baixada do ponto A à reta r. Seja R qualquer ponto de r distinto de Q. Vamos mostrar que PQ < PR. Seja S um ponto de r tal que S ∗ Q ∗ R. Como PQ é perpepndicular a r, segue que PQ̂S = 90◦. Pelo Teorema do Ângulo Externo, temos PQ̂S > PR̂Q, o que implica que PR > PQ. De fato o que a proposição mostra é que a hipotenusa de um triân- gulo retângulo é maior do que os catetos. O número PQ da de- monstração anterior é denominado de distância do ponto P à reta 69 Geometria sem o Postulado das Paralelas m. O segmento QR é chamado de projeção do segmento PR sobre a reta r. Teorema 4.4. (Desigualdade Triangular): Dados três pontos dis- tintos A,B e C, têm-se que AC ≤ AB + BC. A igualdade ocorre se e somente se B pertence ao segmento AC. Figura 4.10: Demonstração Suponha que A,B e C não são colineares. Então ABC é um triângulo. Seja D um ponto da semi-reta SAB tal que A ∗ B ∗D e BD = BC. Assim, o triângulo BCD é isósceles com base CD. Isto implica que BĈD = BD̂C. Note que SCB divide o ângulo AĈD, já que AD intercepta SCB. Assim, AĈD = AĈB +BĈD > BĈD = BD̂C. Pela Proposição 4.11 temos que AD > AC. Como A ∗B ∗D então AD = AB +BD = AB +BC. Logo, AB +BC > AC. Suponha agora que A,B e C são pontos colineares. Se B pertence ao segmento AC, a igualdade AC = AB + BC é trivial. Se vale a igualdade, vamos mostrar que B pertence ao segmento AC. Considere a, b e c as coordenadas dos pontos A,B e C, com c < a, por exemplo. Neste caso, |a− c| = |a− b|+ |b− c| ⇒  |a− c| > |a− b||a− c| > |b− c| 70 Geometria Euclidiana Plana AULA 4o que implica que a− c > a− b e a− c > b− c e portanto b > c e a > b Logo, pelo Teorema 2.1 segue o resultado. Definição 4.5. Sejam uma reta m e um ponto P fora dela. Dize- mos que o ponto P ′ é o reflexo de P relativamente a m se PP ′ é prependicular a m e AP = AP ′, onde A é o ponto de interseção de PP ′ com m. Problema 4.1. Dados dois pontos A e B fora de uma reta r, determinar um ponto P em m tal que AP + PB seja o menor possível. Solução Suponha que A e B estão em semi-planos distintos. Neste caso, AB intercepta r em um ponto P. Se C é um outro ponto de m, então da desigualdade triangular, obtemos AB < AC + CB. Como A ∗ P ∗B, segue que AB = AP + PB < AC +CB, e P é o ponto procurado. Se A e B pertencem a semi-planos distintos, basta considerar o reflexo B′ de B relativamente à reta m. Neste caso, encontramos um ponto P de m que resolve o problema para os pontos A e B′. Este ponto P também resolve o problema para A e B, já que AP = AP ′. 71 Geometria sem o Postulado das Paralelas Figura 4.14: Corolário 4.4. Todo triângulo possui pelo menos dois ângulos in- ternos agudos. De fato, caso contrário existiria um triângulo com pelo menos dois ângulos obtusos cuja soma seria maior do que 180◦. Teorema 4.5. (Saccheri-Legendre): A soma dos ângulos internos de um triângulo é menor ou igual a 180◦. Demonstração Suponha que exista um triânguloABC cuja soma dos ângulos internos é maior do que 180◦, digamos, que seja 180◦+ δ, onde δ é algum número positivo. Pela Proposição 4.13, podemos encontrar um outro triângulo A1B1C1 satisfazendo Â1 + B̂1 + Ĉ1 = 180◦ + δÂ1 ≤ 12Â. Seguindo indutivamente podemos encontrar um triângulo AnBnCn satisfazendo  Ân + B̂n + Ĉn = 180◦ + δÂn ≤ 12n Â. Tomando n0 suficientemente grande tal que 12n0  < δ, teremos que o triângulo An0Bn0Cn0 é tal que Ân0 + B̂n0 + Ĉn0 = 180◦ + δÂn0 < δ 74 Geometria Euclidiana Plana AULA 4Isto implica que Bn0 +Cn0 = 180◦+δ−Ân0 > 180◦, contradizendo a Proposição 4.14. Logo, só pode ser Ân + B̂n + Ĉn ≤ 180◦. 4.7 Soma dos Ângulos de um Triângulo Até aqui ainda não falamos do postulado das paralelas. De fato, todos os resultados até aqui demonstrados são independentes deste postulado, ou seja, podem ser demonstrados sem o uso do postu- lado das paralelas. O Teorema de Saccheri-Legendre afirma que a soma dos ângulos internos de um triângulo é menor ou igual a 180◦. Agora, iremos mostrar que se existe um triângulo cuja soma dos ângulos internos é igual a 180◦, então a soma dos ângulos de qual- quer triângulo é também 180◦. Mas ainda não ficará demonstrado que a soma dos ângulos de um triângulo é 180◦, restando para isso exibir um triângulo com tal propriedade. Definição 4.6. Seja ABC um triângulo. O defeito de um triân- gulo é o número δABC = 180◦ − Â− B̂ − Ĉ. Note que δABC ≥ 0. Teorema 4.6. Seja ABC um triângulo e D um ponto entre A e B. Então δABC = δACD + δBCD. Demonstração Como SCD divide o ângulo AĈB, então AĈB = AĈD+DĈB. Além disso, AD̂C e BD̂C são suplementares, o que implica que AD̂C +BD̂C = 180◦. Portanto, δACD + δBCD = 180◦ − Â−AĈD −AD̂C +180◦ − B̂ −BĈD −BD̂C = 180◦ − Â−AĈB − B̂ = δABC. 75 Geometria sem o Postulado das Paralelas Figura 4.15: Sabendo que o defeito de triângulo é sempre um número não neg- ativo, obtemos o seguinte corolário Corolário 4.5. Sejam ABC um triângulo e D um ponto entre A e B. Então δABC = 0 se e somente se δACD = δBCD = 0. Definição 4.7. Um retângulo é um quadrilátero com os quatro ângulos retos. Teorema 4.7. Se um triângulo existe com a soma dos ângulos 180◦, então um retângulo existe. Se um retângulo existe, então todo triângulo tem a soma dos ângulos igual a 180◦. Demonstração Faremos a demonstração em 5 passos. Suponha incialmente que existe um triângulo com a soma dos ân- gulos igual a 180◦. Passo 1: Construir um triângulo retângulo com a soma dos ângulos 180◦. Seja ABC um triângulo com δABC = 0, que existe pela hipótese. Suponha que não seja reto; caso contrário não temos nada a fazer. Como a soma dos ângulos de um triân- gulo é sempre ≤ 180◦, Teorema de Saccheri-Legendre, então pelo menos dois ângulos são agudos,  e B̂, por exemplo. 76 Geometria Euclidiana Plana AULA 4Passo 5: Se todo triângulo retângulo tem defeito zero, então todo triângulo tem defeito zero. Como no passo 1, divida o triângulo em dois triângulos retân- gulos e use o Corolário 4.5. Como consequência imediata temos o corolário. Corolário 4.6. Se existe um triângulo com defeito positivo, então todos os triângulos têm defeito positivo. 79 Geometria sem o Postulado das Paralelas RESUMO ¨ Nesta aula aprendemos dois teoremas importantes, o Teorema do Ângulo Interno Alternado, par determinar retas paralelas, e o Teo- rema do Ângulo Externo, que nos dá uma importante desigualdade entre os ângulos internos e externos de um triângulo arbitrário. Vi- mos também que sem o postulado das paralelas, provamos apenas que a soma dos ângulos internos de um triângulo é menor ou igual que 180◦. Além disso, provamos que se existe um triângulo com defeito zero, então todos os outros também terá defeito zero. PRÓXIMA AULA ¨ Na próxima aula introduziremos o axioma das paralelas e, entre muitos outros resultados, provaremos que a soma dos ângulos in- ternos de um triângulo arbitrário é sempre igual a 180◦. ATIVIDADES ¨ 1. A figura 4.20 é formada pelos segmentos AC, AE, CF e EB. Determine os ângulos que são: (a) menores do que o ângulo 7̂. (b) maiores do que o ângulo 5̂. (c) menores do que o ângulo 4̂. 2. Na figura 4.21 os ângulos externos AĈE e AB̂D satisfazem a desigualdade: AĈE < AB̂D. Mostre que AB̂D > AB̂. 3. Em um cartório de registro de imóveis um escrivão recusou-se a transcrever o registro de um terreno triangular cujos lados, segundo o seu proprietário, mediam 100m, 60m e 20m. Você pode dar um argumento que justifique a atitude do escrivão? 80 Geometria Euclidiana Plana AULA 4 Figura 4.20: Figura 4.21: 4. Considere um quadrilátero ABDC tal que BD > BC e  > AB̂C. Prove que BD > AC. 5. Considere um triângulo EFG. Tome H ∈ FG tal que EG = EG. Mostre que EĤF > EĤG. 6. Na figura 4.22 m e n são duas retas perpendiculares. Qual o caminho mais curto para se ir do ponto A ao ponto B tocandop-se nas duas retas? 7. Mostre que qualquer triângulo tem pelo menos um ângulo externo obtuso. 8. Considere um triângulo ABC. No segmento AB tome um ponto D, e no segmento CD tome um ponto E. Mostre que AÊC > DB̂C. 81 AULA 5O Axioma das Paralelas META: Estudar o Axioma das Paralelas e suas consequências. OBJETIVOS: Introduzir o Axioma das Paralelas; Estudar a soma dos ângulos de um triângulo. PRÉ-REQUISITOS Congruência e o Teorema do Ângulo Interno Alternado. O Axioma das Paralelas 5.1 Introdução Há evidências de que os postulados, particularmente o quinto, foram formulados por Euclides. Sabe-se que o quinto postulado tornou-se alvo de críticas pelos matemáticos da época. Que o próprio Euclides não confiava totalmente no quinto postulado é mostrado pelo fato que ele adiou o uso em uma prova até sua Proposição 29. Além disso, o fato de que o quinto postulado parecer muito mais com uma proposição do que com afimação óbvia, que qualquer um aceita sem problemas, e que ele é a recíprova de uma das proposições, a Proposição 28 dos Elementos, levou muitos matemáti- cos a acreditarem que o quinto postulado era na verdade uma proposição que Euclides, por não saber demonstrá-la a partir dos quatro primeiros postulados, o introduziu como um postulado. Como consequência destas suspeitas, muitas foram as tentativas de prova do quinto postulado, até que três matemáticos, Carl F. Gauss (1777-1855), Johann Bolyai (1802-1860) e Nikolai I. Lobachewsky (1793-1856), descobriram independentemente as chamadas geome- trias não-Euclidianas, que a grosso modo são geometrias onde o quinto postulado não é válido. Nas aulas anteriores vimos que dada uma reta e um ponto fora dela, existe uma reta paralela a reta dada e passando pelo ponto dado. Nesta aula introduziremos o axioma que garante que esta reta pa- ralela é única, exatamente o que falta para demonstrar muitos outros resultados além do que já provamos até aqui. 5.2 Axioma das Paralelas O Axioma das Paralelas é o seguinte Axioma das Paralelas: Por um ponto fora de uma reta dada pode-se traçar uma única reta paralela a esta reta. 86 Geometria Euclidiana Plana AULA 5 Figura 5.3: Portanto, CB̂E +AB̂C +AB̂D = 180◦. Pelo Teorema 5.1, temos que CB̂E = AĈB e AB̂D = BÂC. Logo, Â+ B̂ + Ĉ = 180◦. Como consequência imediata obtemos o seguinte corolário, cuja prova é deixada para o aluno. Corolário 5.2. a) A soma dos ângulos agudos de um triângulo retângulo é 90◦. b) A medida de um ângulo externo de um triângulo é a soma dos ângulos internos não-adjacentes. c) A soma dos ângulos internos de um quadrilátero é 360◦. Definição 5.1. Um paralelogramo é um quadrilátero cujos lados opostos são paralelos. Proposição 5.16. Os lados e ângulos opostos de um paralelogramo são congruentes. 89 O Axioma das Paralelas Figura 5.4: Demonstração Seja ABCD um paralelogramo. Como AB e DC são paralelos, então BÂC = AĈD. Da mesma forma, concluímos que CÂD = AĈB. Isto implica que DAC = BCA, já que AC é comum a ambos os triângulos. Em particular, AB = DC, AD = BC e B̂ = D̂. Além disso,  = DÂC + CÂB = BĈA + AĈD = Ĉ. Exercício 5.2. Prove que as diagonais de um paralelogramo se intersectam em um ponto que é o ponto médio das duas diagonais. Proposição 5.17. Se os lados opostos de um quadrilátero são con- gruentes então o quadrilátero é um paralelogramo. Demonstração Seja ABCD um quadrilátero tal que AB = CD e BC = AD. O 3◦ caso de congruência de triângulos implica que ABC = CDA. Em particular, B̂ = D̂ e DÂB = DÂC + CÂB = BĈA+AĈD = BĈD. Exercício 5.3. Mostre que se dois lados opostos de um quadrilátero são paralelos e congruentes, então o quadrilátero é um paralelo- gramo. Teorema 5.4. O segmento ligando os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado e tem metade de seu comprimento. Demonstração Seja ABC um triângulo. Sejam D e E os pontos médios dos segmentos AB e AC, respectivamente. 90 Geometria Euclidiana Plana AULA 5 Figura 5.5: Vamos mostrar que DE é paralelo a BC e DE = 12BC. Seja F um ponto na semi-reta SED tal que FD = DE e E ∗D ∗F . Observe que ADE = BDF, já que FD = DE (por construção), AD = DB (já que D é o ponto médio do segmento AB) e AD̂E = BD̂F (pois são opostos pelo vértice). Em particular BF = AE. O ponto E é ponto médio de AC e isto implica que AE = EC e então FB = EC. Além disso, novamente da congruência ADE = BDF , obtemos AÊF = BF̂E. Do Teorema do Ângulo Interior Alternado, que FB é paralelo a EC. Pelo Exercício 5.3, segue que BCEF é um paralelogramo. Portanto, da Proposição 5.16, obtemos que EF = BC e como FD = DE, e F ∗D ∗E segue que DE = 12BC. A próxima proposição será muito útil para o estudo de semelhança de triângulos e é tradicionalmente atribuída a Tales de Mileto, matemático grego que viviu por volta dos anos 624 - 546 a.C. Proposição 5.18. Sejam a, b e c retas paralelas e m e n duas transversais. Suponha que m e n intercectam a, b e c nos pontos A,B e C e nos pontos A′, B′ e C ′, respectivamente. Se A ∗B ∗C, 91 O Axioma das Paralelas não sejam números inteiros. De fato, basta tomar P1 tal que AP1 não seja um divisor comum de AB e AD. Assim, por indução, encontramos pontos P2, P3, . . . , Pk, . . . na semi-reta SAB tais que Pk−1 ∗ Pk ∗ Pk+1 e APk = kAP1, ∀k ≥ 2. Observe que isto implica que PkPk+1 = AP1. Afirmação: D e B não coincidem com nenhum dos P ′is. De fato, caso contrário teríamos D = Pk0 para algum k0 ≥ 1 e AD AP1 = APk AP1 = kAP1 AP1 = k, impcando que ĀD¯AP1 seria inteiro, o que é uma contradição pela escolha do ponto P1. Logo, existem inteiros m e n tais que Pm ∗D∗Pm+1, Pn ∗B ∗Pn+1, A ∗ Pm ∗D e A ∗ Pn ∗B. Isto implica que mAP1 = APm < APm + PmD = AD < AD +DPm+1 = APm+1 = (m+ 1)AP1, ou seja, mAP1 < AB < (n+ 1)AP1. Da mesma forma, encontramos nAP1 < AB < (n+ 1)AP1. Afirmação: m n+ 1 < AD AB < m+ 1 n . (5.2) Esta afirmação é consequência imediata das duas últimas desigual- dades. Trace retas paralelas à reta contendo o segmento BC passando pelos pontos P1, P2, . . . , Pn+1. Pelo Corolário 5.3, estas paralelas cortam SAC em pontos Q1, Q2, . . . , Qn+1 tais que AQ1 = Q1Q2 = Q2Q3 = · · · . Em particular, AQk = kAQ1. Além disso, Qm ∗ 94 Geometria Euclidiana Plana AULA 5E ∗ Qm+1 e Qn ∗ C ∗ Qn+1. Da mesma forma que obtivemos a desigualdade (5.2), obtemos m n+ 1 < AE AC < m+ 1 n . (5.3) As desigualdades (5.2) e (5.3) implicam que∣∣∣∣ĀDĀB − ĀEĀC ∣∣∣∣ < m+ 1n − mn+ 1 . Observe que m ≤ n, o que implica que m+ 1 n − m n+ 1 = m+ n+ 1 n(n+ 1) ≤ 2n+ 2 n(n+ 1) = 2 n . Assim, ∣∣∣∣ADAB − AEAC ∣∣∣∣ < 2n. (5.4) Como 2n pode ser tomado muito pequeno se AP1 é tomado muito pequeno (Por quê?), segue que AD AB = AE AC , já que estes quocientes não dependem de n na desigualdade (5.4). 5.4 Semelhança de Triângulos Dizemos que dois triângulos ABC eDEF são semelhantes se existe uma correspondência entre os vértices A ↔ D, B ↔ D e C ↔ F, tal que  = D̂, B̂ = Ê, Ĉ = F̂ e AB EF = BC FG = CA GE . O quociente comum entre as medidas dos lados correspondentes é chamado de razão de proporcionalidade entre os triângulos. 95 O Axioma das Paralelas Notação: Usaremos a notação ABC ∼ DEF para indicar que os dois triângulos são semelhantes e a correspondência entre os vér- tices é dada exatamente na ordem que eles aparecem. Observe que dois triângulos congruentes são semelhantes. O próximo teorema afirma que não é necessário verificar todas as condições da definição de semelhança de triângulos, basta verificar algumas delas. Ele conhecido também como o 2◦ caso de semel- hança de triângulos. Teorema 5.6 (Casso AAA de semelhança). Se em dois triângulos ABC e DEF tem-se  = D̂, B̂ = Ê e Ĉ = F̂ , então ABC ∼ DEF. Figura 5.8: Demonstração Sejam G e H pontos nas semi-retas SAB e SAC , respectivamente, tais que AG = DE e AH = DF. Pelo caso LAL de congruência de triângulos, segue que AGH = DEF. Assim, AĜH = Ê = B̂, o que implica que GH e BC são paralelas. O Teorema 5.5 afirma que AG AB = AH AC , 96 Geometria Euclidiana Plana AULA 5Note que AĜH = B̂, o que implica que AGH ∼ ABC, pelo caso AAA de semelhança de triângulos. Em particular AG AB = AH AC = GH BC . Mas como AG = DE e AB DE = BC EF , então GH BC = AG AB = DE AB = EF BC o que implica que EF = GH. Da mesma forma, mostramos que AG = DE e AH = DF. Logo, ABC ∼ EFG. Teorema 5.9. Seja ABC um triângulo retângulo cujo ângulo reto é Ĉ. Seja D o pé da perpendicular baixada de C a AB. Então ACD ∼ ABC ∼ CBD. A demonstração baseia-se no fato que a soma dos ângulos internos de um triângulo retângulo é 180◦ e no caso AAA de semelhança de triângulos. Usaremos este teorema para a demonstração do Teorema de Pitágoras a seguir. Teorema 5.10 (Teorema de Pitágoras). Seja ABC um triângulo retângulo cujo ângulo reto é Ĉ. Se AB = c, AC = b e BC = a, então c2 = a2 + b2. Demonstração Seguindo a figura anterior, temosACD ∼ ABC ∼ CBD, o que implica que AC AB = AD AC e BC AB = DB BC . Assim, b2 = cAD e a2 = cDB implica que a2 + b2 = c(AD +DB) = c2. 99 O Axioma das Paralelas Figura 5.11: Exercício 5.4. Nas condições anteriores ,prove que h2 = ĀDD̂B. O próximo teorema é simplesmente a recíprova do Torema de Pitá- goras. Teorema 5.11. Se a, b e c são as medidas dos lados de um triân- gulo e satisfazem c2 = a2 + b2, então o triângulo é retângulo com hipotenusa c. Figura 5.12: Demonstração Seja ABC um triângulo com AB = c, AC = b e BC = a. Seja DF̂E um ângulo reto com EF = AC e DF = BC. Pelo Teorema de Pitágoras, temos que DE = √ a2 + b2 = c. Pelo caso LLL de congruência de triângulos, temos ABC = EDF. Exercício 5.5. Mostre que em qualquer triângulo, o produto de uma base e a correspondente altura é independente da escolha da 100 Geometria Euclidiana Plana AULA base. 5 101
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved