Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Radiologia Industrial, Notas de estudo de Radiologia

Caracteristicas

Tipologia: Notas de estudo

2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 26/01/2010

guilherme-moura-5
guilherme-moura-5 🇧🇷

5

(1)

1 documento

Pré-visualização parcial do texto

Baixe Radiologia Industrial e outras Notas de estudo em PDF para Radiologia, somente na Docsity! Ed. Jun./ 2006 AUTOR: Ricardo Andreucci EE Ea A Radiologia Industrial - Ricardo Andreucci 1 RICARDO ANDREUCCI Prefácio “Este trabalho apresenta um guia básico para programas de estudos e treinamento de pessoal em Radiologia Industrial, contendo assuntos voltados para as aplicações mais comuns e importantes deste método de Ensaio Não Destrutivo. Trata-se portanto de um material didático de interesse e consulta, para os profissionais e estudantes que se iniciam ou estejam envolvidos com a inspeção de materiais por radiografia. Por utilizar as radiações ionizantes como principal fonte de energia penetrante para a inspeção, isto pode representar risco e danos à saúde, assim recomendamos que a utilização deste método de ensaio seja acompanhado de treinamento específico em Proteção Radiológica. O autor disponibiliza um livro específico sobre o assunto com título - Curso Básico de Proteção Radiológica Industrial” O Autor A Radiologia Industrial - Ricardo Andreucci 4 Assunto Pág. Técnicas de Exposição Radiográfica ...................................................... 79 Técnica de Parede Simples .................................................................,.. Técnicas de Parede Dupla ..................................................................... 80 80 Interpretação dos Resultados ................................................................. 82 Aparência das Descontinuidades ........................................................... Descontinuidades Internas em Juntas Soldadas .................................... 82 83 Critérios de Aceitação ............................................................................ 87 Critérios para Ensaio Radiográfico de Soldas ........................................ Critério de Aceitação para Radiografia Total - UW-51 ........................... Critério de Aceitação para Radiografia "Spot" - UW-52 ......................... Critério de Aceitação para Qualificação de Soldadores – QW-191.......... 87 87 88 90 Outras Aplicações da Radiologia ........................................................... 92 Tabelas Úteis ......................................................................................... 105 Obras Consultadas ................................................................................ 110 A Radiologia Industrial - Ricardo Andreucci 5 ntrodução Os Ensaios Não Destrutivos Quando pensamos em aeronaves, automóveis, metro, trens, navios, submarinos, e outras, todas estas máquinas não poderiam ter um bom desempenho não fossem a qualidade do projeto mecânico, dos materiais envolvidos, dos processos de fabricação e montagem, inspeção e manutenção. Todo esse elevado grau de tecnologia foi desenvolvido e aplicado para um fim comum, que é assegurar e proteger a vida daqueles que dependem de alguma forma, do bom funcionamento dessas máquinas, quer sejam nas indústrias automobilísticas, petróleo e petroquímicas, geração de energia inclusive nuclear, siderúrgica, naval e aeronáutica. Hoje no mundo moderno , a globalização nestes segmentos industriais fez aumentar o número de projetos e produtos de forma multinacional. Usinas elétricas, plantas petroquímicas, aviões, podem ser projetados em um país e construídos em outro, com equipamentos e matéria prima fornecidos pelo mundo todo. Esta revolução global tem como conseqüência a corrida por custos menores e pressão da concorrência. Sendo assim, como garantir que os materiais, componentes e processos utilizados tenham a qualidade requerida ? Como garantir a isenção de defeitos que possam comprometer o desempenho das peças ? Como melhorar novos métodos e processos e testar novos materiais ? As respostas para estas questões estão em grande parte na inspeção e consequentemente na aplicação dos Ensaios Não Destrutivos. Um dos avanços tecnológicos mais importantes na engenharia, podem ser atribuídos aos ensaios não destrutivos. Eles investigam a sanidade dos materiais sem contudo destruí-los ou introduzir quaisquer alterações nas suas características. Aplicados na inspeção de matéria prima, no controle de processos de fabricação e inspeção final, os ensaios não destrutivos constituem uma das ferramentas indispensáveis para o controle da qualidade dos produtos produzidos pela indústria moderna. Quando se deseja inspecionar peças com finalidade de investigar sobre defeitos internos , a Radiografia e o Ultra-som são poderosos métodos que podem detectar com alta sensibilidade descontinuidades com poucos milímetros de extensão. Usados principalmente nas indústrias de petróleo e petroquímica, nuclear, alimentícia, farmacêutica, geração de energia para inspeção principalmente de soldas e fundidos, e ainda na indústria bélica para inspeção de explosivos, armamento e mísseis, a radiografia e o ultra-som desempenham papel importante na comprovação da qualidade da peça ou componente em conformidade com os requisitos das normas , especificações e códigos de fabricação. Usados também na qualificação de soldadores e operadores de soldagem, a radiografia e ultra-som proporcionam registros importantes para a documentação da qualidade. I A Radiologia Industrial - Ricardo Andreucci 6 Em juntas soldadas, a radiografia e o ultra-som são dois métodos frequentemente referenciados pelos Códigos de fabricação de peças ou estruturas de responsabilidade para determinação da eficiência da base de cálculo pela engenharia. Outros ensaios não destrutivos também fazem parte das ferramentas da qualidade onde podemos citar: Partículas Magnéticas , Termografia , Emissão acústica , Correntes Parasitas , Líquido Penetrante. Considerado como um processo especial pelos Sistemas da Qualidade, NBR ISO-90011 e outros, os ensaios não destrutivos são aplicados segundo requisitos de projeto do produto fabricado, e não de forma aleatória ao prazer da conveniência de engenheiros e técnicos. A radiologia industrial desempenha um papel importante e de certa forma insuperável na documentação da qualidade do produto inspecionado, pois a imagem projetada do filme radiográfico representa a "fotografia" interna da peça, o que nenhum outro ensaio não destrutivo é capaz de mostrar na área industrial. Sendo assim, o treinamento, qualificação e certificação dos profissionais envolvidos com estes métodos é requisito importante do sistema da qualidade. Hoje no Brasil, as qualificações e certificações de pessoal para ensaios não destrutivos são efetuadas por organizações de classe como associações, ou por instituições ou fundações governamentais. A mais importante é o Sistema Nacional de Qualificação e Certificação - SNQ&C gerenciado pela Associação Brasileira de Ensaios Não Destrutivos - ABENDE, com reconhecimento pelo INMETRO. As certificações de pessoal são dirigidas a segmentos industriais, tais como: siderurgia, aeronáutica, calderaria, petróleo e petroquímica e outros. 1Processos Especiais são considerados processos em que as características da qualidade não podem ser totalmente recuperados após o serviço acabado. Sào exemplos de processos especiais: Soldagem, pintura, paladar, textura, e outros. - Texto extraído da ISO 9000-2 ed.94. A edição mais atual ISO 9001:2000 relata que a organização deve validar quaisquer processos de produção ou prestação de serviço onde o resultado não possa ser verificado por subsequente monitoramento ou medição ou após o serviço prestado. A Radiologia Industrial - Ricardo Andreucci 9 naturalmente). Ele achava que a maioria das partículas passavam direto através da fina folha do metal em sua direção original. Contudo, algumas partículas foram desviadas. Experiência atômica de Rutherford em 1906. Isto levou ao desenvolvimento do modelo atômico que é aceito até hoje. O núcleo contém carga positiva do átomo e ao redor do núcleo, giram um número de elétrons. Os elétrons ocupam níveis ou camadas de energia e o espaçamento desses níveis causam o grande tamanho do átomo em comparação com o núcleo. Núcleo camada K camada L camada M Modelo atômico de Rutherford. Os cientistas conheciam agora que o átomo consistia de um núcleo contendo um número de prótons e uma nuvem eletrônica com igual número de elétrons. Contudo eles achavam confuso, pelo fato do átomo de hélio (número atômico 2) pesar quatro vezes mais que o átomo de hidrogênio. Irregularidades no peso persistiam através da tabela periódica. Predisseram algumas teorias para o acontecido, mas a confusão terminou em 1932, quando James Chadwick, físico inglês, descobriu uma partícula chamada de neutron. Essa partícula tinha uma massa igual ao do próton, mas não tinha carga. Para descrever essa nova propriedade, cientistas alegaram o número de massa, número de partículas (prótons e neutrons no núcleo). Descrevendo o átomo, o número de massa seria escrito com um número superior no símbolo químico. A Radiologia Industrial - Ricardo Andreucci 10 Variações e Composição dos Átomos , Radioisótopos: Todos os elementos que contém, em seu núcleo atômico, o mesmo número de prótons, mas que possuem números diferentes de neutrons, manifestam as mesmas propriedades químicas e ocupam o mesmo lugar na classificação periódica. São elementos que, por terem o mesmo número de prótons, têm o mesmo número atômico e por terem números diferentes de neutrons têm número de massa diversos. São chamados isótopos, nome cuja etnologia indica o mesmo lugar que ocupam na classificação periódica dos elementos. O número de isótopos conhecidos, de cada elemento, é muito variável. O Iodo, por exemplo, tem 13, o ferro e o Urânio tem 6, cada um. Os isótopos de um mesmo elemento não tem as mesmas propriedades físicas. Assim, por exemplo, o isótopo do Iodo (I-127) é estável, todos os outros são radioativos, isto é, são chamados de radioisótopos. A partir de 1954, os radioisótopos passaram a ser produzidos em escala apreciável, nos reatores, iniciando-se a fase de produção de fontes radioativas de alta intensidade que têm um grande número de aplicações industriais. Os trabalhos baseados no emprego dos radioisótopos tem hoje enorme extensão. As experiências multiplicaram-se em muitos setores e, não é exagero dizer que os radioisótopos têm trazido uma verdadeira revolução em todos os domínios, nos quais a experimentação desempenha papel preponderante. Radiação e Radioatividade Define-se “Radioatividade” como sendo a emissão espontânea de radiação por um núcleo atômico, que se encontra num estado excitado de energia. Existem três tipos diferentes de radiação, como segue: - Partículas Alfa (α) - Partículas Beta (β) - Raios Gama (γ) As partículas “Alfa” são constituídas de dois neutrons e dois prótons, caracterizando um núcleo atômico de Hélio. Devido ao seu alto peso e tamanho, elas possuem pouca penetração e são facilmente absorvidas por poucos centímetros de ar. As partículas “Beta” são constituídas por elétrons, que possuem velocidades próximas da luz, com carga elétrica negativa. Possuem um poder de penetração bastante superior às radiações Alfa, podendo ser absorvidas por alguns centímetros de acrílico ou plásticos, na sua grande maioria. As “partículas” “Gama” são de natureza ondulatória, ao contrário das demais que tem características corpusculares. Devido a isto, adquire um alto poder de penetração nos materiais. E possível separar os três tipos de radiação descritos através da aplicação de um campo elétrico ou magnético, numa amostra de material radioativo. A Radiologia Industrial - Ricardo Andreucci 11 Esquema de separação das radiações alfa, beta e gama. O poder de penetração das radiações eletromagnéticas, Raios X e Gama, são caracterizadas pelo seu comprimento de onda (ou energia) . As propriedades dos Raios X que tem importância fundamental, quando se trata de ensaios não destrutivos e são aquelas citadas anteriormente. Outras grandezas relativas às ondas eletromagnéticas são frequência e energia. Podemos converter a energia em comprimento de onda ou em frequência. A equação que relaciona a energia com o comprimento de onda é a equação de Planck: h .x c E = ------ λ onde: E = energia (Joule). h = constante de Planck ( 6.624 x 10-34 Joule x segundo). c = velocidade da luz. λ = comprimento de onda. A energia das radiações emitidas tem importância fundamental no ensaio radiográfico, pois a capacidade de penetração nos materiais está associada a esta propriedade. Exemplo de aplicação: Qual a energia de uma radiação eletromagnética com comprimento de onda igual a 0,1 Angstrom? Resposta: sendo c = 300 000 km/s = 3 x 108 m/s e 0,1 A = 10-9 m E = 6,624 x 10-34 x 3 x 108 / 10-9 = 1,987 x 10-16 Joule como 1 Joule = 6,242 x 10 12 Mev E = 0,0012 Mev ou 1,2 kev A Radiologia Industrial - Ricardo Andreucci 14 b) Refrigeração por convecção: O calor irradiado pelo ânodo, se transmite ao prolongamento de cobre, o qual está imerso em óleo ou gás, que se refrigera por convecção natural, ou por circulação. c) Refrigeração por circulação forçada de água: A refrigeração descrita em (b), é limitada, principalmente se o aparelho for operado continuamente, exposto ao sol. Neste caso, a circulação de água por uma serpentina interna à unidade geradora, é eficaz, permitindo o uso do aparelho por longos períodos de uso. Unidade Geradora, Painel de Comando Os equipamentos de Raios X industriais se dividem geralmente em dois componentes: o painel de controle e o cabeçote, ou unidade geradora. O painel de controle consiste em uma caixa onde estão alojados todos os controles, indicadores, chaves e medidores, além de conter todo o equipamento do circuito gerador de alta voltagem. E através do painel de controle que se fazem os ajustes de voltagem e amperagem, além de comando de acionamento do aparelho. No cabeçote está alojada a ampola e os dispositivos de refrigeração. A conexão entre o painel de controle e o cabeçote se faz através de cabos especiais de alta tensão. As principais características de um equipamento de Raios X são: a - tensão e corrente elétrica máxima; b - tamanho do ponto focal e tipo de feixe de radiação; c - peso e tamanho; Esses dados determinam a capacidade de operação do equipamento, pois estão diretamente ligados ao que o equipamento pode ou não fazer. Isso se deve ao fato dessas grandezas determinarem as características da radiação gerada no equipamento. A voltagem se refere à diferença de potencial entre o ânodo e o cátodo e é expressa em quilovolts (kV). A corrente elétrica do tubo e é expressa em miliamperes (mA). Outro dado importante se refere à forma geométrica do ânodo no tubo. Quando em forma plana, e angulada, propicia um feixe de radiação direcional, e quando em forma de cone, propicia um feixe de radiação panorâmico, isto é, irradiação a 360 graus, com abertura determinada. Os equipamentos considerados portáteis, com voltagens até 400 kV, possuem peso em torno de 40 a 80 kg, dependendo do modelo. Os modelos de tubos refrigerados a gás são mais leves ao contrário dos refrigerados a óleo. A Radiologia Industrial - Ricardo Andreucci 15 Raios X industrial, de até 300 kV Inspeção radiográfica de soldas em tubos (CONFAB) Energia Máxima dos Raios X e Rendimento Duas grandezas são geralmente usadas para descrever um determinado feixe de Raios X: a qualidade e a intensidade de radiação. Sabemos que os Raios X são gerados quando elétrons em alta velocidade são desacelerados no material do alvo. Essa desaceleração se faz por meio de colisão dos elétrons com o material do alvo. O caso mais simples ocorre quando um elétron se choca diretamente com o núcleo de um átomo do alvo. A energia adquirida pelo elétron, no campo elétrico entre o cátodo e o ânodo será dada pela relação seguinte: 1 E = ------ m . v2 = e . V (eq.1) 2 onde: V = diferença de potencial aplicada entre o cátodo e o ânodo. m = massa do elétron v = velocidade do elétron quando atinge o alvo (ânodo) e = carga do elétron = 1,6 x 10-19 C Por outro lado a energia pode ser escrita na forma : Emax = h x fmax sendo fmax = c / λmin onde: h = é a constante de Planck = 6,62 x 10-34 J.s c = velocidade da luz = 3 x 108 m/s A Radiologia Industrial - Ricardo Andreucci 16 Portanto podemos reescrever a eq.(1) acima na forma: h x c = e x V λmin = 6,62 x 10 -34 x 3 x 108 m λmin 1,6 x 10 -19 x V λmin = 1,24125 x 10 6 m / V sendo 1 Angstron = 10-10 m Portanto quando um elétron se choca com o núcleo de um átomo do alvo e transforma toda a sua energia em radiação X, podemos determinar o comprimento de onda mínimo da radiação gerada . 12.412,5 λmin = ----------- Angstrons , V = diferença de potencial aplicada em Volts. V O comprimento de onda encontrado é chamado de comprimento de onda mínimo, (λ min) pois representa a onda de maior energia que pode ser criada. Quanto menor o comprimento de onda mais penetrante serão os Raios X gerados. Assim como regra geral, para peças finas devemos utilizar maior comprimento de onda ( menor energia) do que para peças com grande espessura. Assim, para uma tensão máxima de 60 kV, o comprimento de onda mínimo será de 0,2 Angstron; e para 120 kV será de 0,1 Angstron Nota-se que esse comprimento de onda depende da voltagem aplicada ao tubo. Assim, quando aumentamos a voltagem no tubo, estamos criando radiação com o menor comprimento de onda, ou seja, radiação de maior energia. Apenas uma parcela muito pequena dos elétrons que atingem o alvo troca toda a sua energia através do choque com o núcleo. A maior parte dos elétrons incidentes choca-se com outros elétrons orbitais, transferindo-lhes parte de sua energia. Portanto, quando esses elétrons chegam a se chocar contra o núcleo de um átomo, já perderam parte de sua energia, indo gerar, portanto, Raios X de maior comprimento de onda, ou seja, de menor energia. Dessa forma, os Raios X emitidos por uma determinado aparelho apresentam uma grande variedade de comprimento de onda, a partir do comprimento de onda mínimo. O conceito de qualidade de radiação está ligado à energia do feixe de Raios X. Quando aumentamos a voltagem do aparelho, aumentamos a energia do feixe de radiação gerado, estamos aumentando a qualidade da radiação, com conseqüente aumento do poder de penetração da mesma. Os Raios X de alta energia, geralmente produzidos com voltagem superiores a 120 kV, são também chamados de raios “duros”. Os Raios X gerados com tensão inferiores a 50 kV são chamados Raios X “moles”. A Radiologia Industrial - Ricardo Andreucci 19 O circuito elétrico abaixo denominado Circuito Greinacher é um sistema que permite a passagem de corrente elétrica na ampola de Raios X quase que contínuo, com uma tensão de operação maior , também conhecido como Potencial Constante. i co rr en te a lte rn ad a i Ampola de Raios X tempo + _ V o lt s 0 Circuito Greinacher Acessórios do Aparelho de Raios X Cabos de energia: O aparelho de Raios X composto pela mesa de comando e unidade geradora, são ligadas entre si através do cabo de energia. A distância entre a unidade geradora e a mesa de comando deve ser tal que o operador esteja protegido no momento da operação dos controles, segundo as normas básicas de segurança. Para tanto os fabricantes de aparelhos de Raios X fornecem cabos de ligação com comprimento de 20 a 30 metros dependendo da potência máxima do tubo gerador. Blindagem de Proteção : O início da operação do aparelho deve ser feita com aquecimento lento do tubo de Raios X, conforme as recomendações do fabricante. Neste processo o operador deve utilizar as cintas ou blindagens especiais que são colocadas na região de saída da radiação, sobre a carcaça da unidade geradora. Este acessório fornecido pelo fabricante permite maior segurança durante o procedimento de aquecimento do aparelho. A Radiologia Industrial - Ricardo Andreucci 20 Aceleradores Lineares O aceleradores lineares são aparelhos similares aos aparelhos de Raios X convencionais com a diferença que os elétrons são acelerados por meio de uma onda elétrica de alta freqüência, adquirindo altas velocidades ao longo de um tubo retilíneo. Os elétrons ao se chocarem com o alvo, transformam a energia cinética adquirida em calor e Raios X com altas energias cujo valor dependerá da aplicação. Para uso industrial em geral são usados aparelhos capazes de gerar Raios X com energia máxima de 4 Mev. Os Betatrons são considerados como transformadores de alta voltagem o que consiste na aceleração dos elétrons de forma circular por mudança do campo magnético primário, adquirindo assim altas velocidades e consequentemente a transformação da energia cinética em Raios X, após o impacto destes com o alvo. Este processo podem gerar energias de 10 a 30 Mev. Os aceleradores lineares e os betatrons são aparelhos destinados a inspeção de componentes com espessuras acima de 100 mm de aço. As vantagens do uso desses equipamentos de grande porte, são: • foco de dimensões reduzidas (menor que 2 mm) • tempo de exposição reduzido • maior rendimento na conversão em Raios X A foto ao lado representa uma unidade de comando de um aparelho de Raios X industrial moderno. O painel, digital, resume uma série de informações técnicas sobre a exposição, tais como distância fonte-filme, kilovoltagem, miliamperagem, tempo de exposição. As informações no display poderá ser memorizada e recuperada quando necessário. A Radiologia Industrial - Ricardo Andreucci 21 Estes equipamentos não são portáteis e necessitam de instalação adequada, tanto do ponto de vista de movimentação do aparelho como das espessuras das paredes de concreto requeridas, que podem alcançar cerca de 1,2 metros. Fotos de um acelerador linear LINAC - Mitsubishi, usado para radiografia industrial de peças com espessura de 20 a 300 mm de aço. (Foto cedida pela CBC Indústrias Mecânicas – São Paulo) Os Raios Gama Com o desenvolvimento dos reatores nucleares, foi possível a produção artificial de isótopos radioativos através de reações nucleares de ativação. O fenômeno de ativação, ocorre quando elementos naturais são colocados junto ao núcleo de um reator e, portanto, irradiados por neutrons térmicos, que atingem o núcleo do átomo, penetrando nele. Isto cria uma quebra de equilíbrio energético no núcleo, e ao mesmo tempo muda sua massa atômica, caracterizando assim o isótopo. O estabelecimento do equilíbrio energético do núcleo do átomo, é feito pela liberação de energia na forma de Raios gama. Um átomo que submetido ao processo de ativação, e portanto seu núcleo se encontra num estado excitado de energia passa a emitir radiação. É fácil ver, portanto, que o número de átomos capazes de emitir radiação, diminui gradualmente com o decorrer do tempo. A esse fenômeno chamamos de Decaimento Radioativo. Acelerador linear industrial, para radiografias de peças com espessuras acima de 100 mm de aço. Projetado para produzir um feixe de radiação de 4 Mev, com ponto focal bastante reduzido de 2 mm, produz uma taxa de dose de 2,5 Gy/min a 1 m operando com 2 Mev, e 0,25 Gy/min com 1 Mev.. Produz filmes com alta qualidade, mesmo em altas espessuras. Foto e dados extraída do catálogo da VARIAN A Radiologia Industrial - Ricardo Andreucci 24 Devido a uma grande variedade de fabricantes e fornecedores existem diversos tipos de engates de porta-fontes. fonte mola cabo de aço cápsula de aço inoxidável engate Características das fontes seladas radioativas industriais Embora apenas poucas fontes radiativas seladas sejam atualmente utilizadas pela indústria moderna, daremos a seguir as principais que podem ser utilizadas assim como as suas características físico-químicas. (a) Cobalto - 60 ( 60Co , Z=27) O Cobalto-60 é obtido através do bombardeamento por nêutrons do isótopo estável Co- 59. Suas principais características são: • Meia - Vida = 5,24 anos • Energia da Radiação = 1,17 e 1,33 MeV • Faixa de utilização mais efetiva = 60 a 200 mm de aço • Fator Gama ( Γ ) = 9,06 µC/kg.h / GBq a 1 m ou 1,35 R/h .Ci a 1m ou 0,351 mSv/h.GBq a 1m Esses limites dependem das especificações técnicas da peça a ser examinada e das condições da inspeção. (b) Irídio - 192 ( 192Ir , Z=77) O Iridio-192 é obtido a partir do bombardeamento com nêutrons do isótopo estável Ir-191. Suas principais características são: • Meia - Vida = 74,4 dias • Energia da Radiação = 0,137 a 0,65 MeV • Faixa de utilização mais efetiva = 10 a 40 mm de aço • Fator Gama ( Γ ) = 3,48 µC/kg.h / GBq a 1 m ou 0,50 R/h.Ci a 1m ou 0,13 mSv/h . GBq a 1m 2 discos de Ir-192 , φ 3 mm x 0,25 mm A Radiologia Industrial - Ricardo Andreucci 25 (c) Túlio -170 ( 170Tu , Z=69) O Túlio-170 é obtido com o bombardeamento por nêutrons do isótopo estável, Túlio - 169. Como esse material é extremamente difícil de produzir, o material é geralmente manuseado sob a forma de óxido. Suas principais características são: • Energia de Radiação: 0, 084 e 0,54 MeV. (O espectro do Túlio possui também radiação de Bremsstrahlung, que é a radiação liberada pelo freiamento dos elétrons em forma de partículas beta). • Meia - Vida = 127 dias • Faixa de utilização mais efetiva = 1 a 10 mm de aço • Fator Gama ( Γ ) = 0,017 µC/kg.h / GBq a 1 m ou 0,0025 R/h.Ci a 1m ou 0,0007 mSv/h .GBq a 1m (d) Césio - 137 ( 137Cs , Z=55) O Césio-137 é um dos produtos da fissão do Urânio-235. Este é extraído através de processos químicos que o separam do Urânio combustível e dos outros produtos de fissão. Suas principais características são: • Meia - Vida = 33 anos • Energia de Radiação = 0,66 MeV • Faixa de utilização mais efetiva = 20 a 80 mm de aço • Fator Gama ( Γ ) = 2,30 µC/kg.h / GBq a 1 m ou 0,33 R/h.Ci a 1m ou 0,081 mSv/h .GBq a 1m É uma fonte de radiação quase sem utilidade no momento, em razão das dificuldades de obtenção e da má qualidade do filme radiográfico (e) Selênio - 75 ( 75Se ) • Meia-vida = 119,78 dias • Energia das Radiações = de 0,006 a 0,405 MeV • Faixa de utilização mais efetiva = 4 a 30 mm de aço • Fator Gama ( Γ ) = 1,39 µC/kg.h / GBq a 1 m ou 0,28 R/h.Ci a 1m É um radioisótopo de uso recente na indústria, proporcionando uma qualidade muito boa de imagem, assemelhando-se à qualidade dos Raios-X Irradiador gama específico para fontes radiativas de Selênio-75. Foto extraída do catálogo da Sauerwein A Radiologia Industrial - Ricardo Andreucci 26 Características Físicas dos Irradiadores Gama: Os irradiadores gama são equipamentos dotados de partes mecânicas que permitem expor com segurança a fonte radioativa. A principal parte do irradiador é a blindagem interna , que permite proteção ao operador a níveis aceitáveis para o trabalho, porém com risco de exposição radiológica se armazenado em locais não adequados ou protegidos. O que mais diferencia um tipo de irradiador de outro são os dispositivos usados para se expor a fonte. Esses dispositivos podem ser mecânicos, com acionamento manual ou elétrico, ou pneumático. A única característica que apresentam em comum é o fato de permitirem ao operador trabalhar sempre a uma distância segura da fonte, sem se expor ao feixe direto de radiação. Os irradiadores gama são construídos através de rígidos controles e testes estabelecidos por normas internacionais, pois o mesmo deve suportar choques mecânicos, incêndio e inundação sem que a sua estrutura e blindagem sofram rupturas capazes de deixar vazar radiação em qualquer ponto mais do que os máximos exigidos. Aparelho para gamagrafia industrial, projetado para operação com capacidade máxima de 100 Ci de Ir-192. O transito interno da fonte no interior da blindagem é feita no canal em forma de "S " A Radiologia Industrial - Ricardo Andreucci 29 EXEMPLO DE UM CERTIFICADO DE FONTE SELADA PARA USO INDUSTRIAL A Radiologia Industrial - Ricardo Andreucci 30 egistro Radiográfico Filmes Radiográficos Os filmes radiográficos são compostos de uma emulsão e uma base. A emulsão consiste em uma camada muito fina (espessura de 0,025 mm) de gelatina, que contém, dispersos em seu interior, um grande número de minúsculos cristais de brometo de prata. A emulsão é colocada sobre um suporte, denominado base, que é feito geralmente de um derivado de celulose, transparente e de cor levemente azulada. Uma característica dos filmes radiográficos é que, ao contrário dos filmes fotográficos, eles possuem a emulsão em ambos os lados da base. Os cristais de brometo de prata, presentes na emulsão, possuem a propriedade de, quando atingidos pela radiação ou luz, tornarem-se susceptíveis de reagir com produto químico denominado revelador. O revelador atua sobre esses cristais provocando uma reação de redução que resulta em prata metálica negra. Os locais do filme, atingidos por uma quantidade maior de radiação apresentarão, após a ação do revelador, um número maior de grãos negros que regiões atingidas por radiação de menor intensidade, dessa forma, quando vistos sob a ação de uma fonte de luz, os filmes apresentarão áreas mais escuras e mais claras que irão compor a imagem do objeto radiografado. Estrutura de um filme radiográfico Os filmes radiográficos industriais são fabricados nas dimensões padrões de 3.1/2” x 17” ou 4.1/2” x 17” ou 14” x 17” . Outras dimensões e formatos podem ser encontrados em outros países da Europa e EUA R A Radiologia Industrial - Ricardo Andreucci 31 Granulação A imagem nos filmes radiográficos é formada por uma série de partículas muito pequenas de sais de prata, os quais não visíveis a olho nu. Entretanto, essas partículas se unem em massas relativamente grandes que podem ser vistas pelo olho humano ou com auxílio de pequeno aumento. Esse agrupamento das partículas de sais de prata da emulsão cria uma impressão chamada de “Granulação”. Todos os filmes apresentam o fenômeno de granulação. Por possuírem grãos maiores, os filmes mais rápidos apresentam uma granulação mais acentuadas que os filmes lentos. A granulação, além de ser característica de cada filme, também sofre uma influência da qualidade da radiação que atinge o filme. Portanto, podemos afirmar que a granulação de um filme aumenta quando aumenta a qualidade da radiação. Por essa razão os filmes com grãos mais finos são recomendados quando se empregam fontes de alta energia (Raios X da ordem de milhões de volts). Quando usados com exposição longa, esses filmes também podem ser empregados com raios gama. A granulação é também afetada pelo tempo de revelação do filme. Se aumentarmos, por exemplo, o tempo de revelação, haverá um aumento simultâneo na granulação do filme. Esse efeito é comum quando se pretende aumentar a densidade, ou a velocidade, de um filme por intermédio de um aumento no tempo de revelação. E claro que o uso de tempos de revelação pequenos resultarão em baixa granulação porém corremos o risco de obter um filme sub-revelado. É importante salientar que a granulação aumenta de acordo com o aumento de grau de revelação. Dessa forma, aumentamos no tempo de revelação que visam a compensar atividade do revelador ou a temperatura do banho, terão uma influência muito pequena na granulação do filme. Densidade Óptica A imagem formada no filme radiográfico possui áreas claras e escuras evidenciando um certo grau de enegrecimento que denominamos de Densidade. Matematicamente expressamos a densidade como sendo logaritmo da razão entre a intensidade de luz visível que incide no filme e a intensidade que é transmitida e visualmente observada. Io D = log ----- I onde Io = intensidade de luz incidente I = intensidade de luz transmitida Ampliação dos grãos de um filme radiográfico ainda não processado. (foto extraída do Livro da Kodak) A Radiologia Industrial - Ricardo Andreucci 34 Classificação dos Filmes Industriais A grande variedade de condições e a heterogeneidade de materiais encontrados na radiografia industrial, levaram os fabricantes a produzir várias espécies de filmes. Uma classificação dos filmes foi estabelecida pelo ASTM* E-1815-96 , que identifica os tipos de filmes pela velocidade de exposição e sensibilidade. A velocidade de exposição é função logarítmica da dose de radiação necessária para que o filme atinja densidade óptica de 2,0. Tipos dos Filmes : • Tipo 1 - Características: granulação ultra fina alto contraste e qualidade. Deve ser usado em ensaios de metais leves ou pesados, ou seções espessas, com radiação de alta energia. • Tipo 2 - Características: Filme com granulação muito fina e com alta velocidade e alto contraste quando utilizado em conjunto com telas intensificadoras de chumbo. • Tipo 3 - Características: Filme de granulação fina, com alto contraste e velocidade. É o filme mais utilizado na indústria em razão do atendimento em qualidade e maior produtividade • Tipo 4 - Características: Filme de granulação média, pouco utilizado na indústria. Qualidade da Imagem Radiográfica A qualidade da imagem radiográfica está associada a alguns parâmetros importantes ligados a características do filme radiográfico e da fonte de radiação utilizada , e é um fator para aceitação ou rejeição da radiografia. Contraste Para que se forme uma imagem no filme é necessário que ocorram variações na densidade ao longo do mesmo. Em outras palavra, uma imagem é formada a partir de áreas claras e escuras. A diferença de densidades entre duas regiões adjacentes no filme é denominada de Contraste. Por exemplo se medirmos a densidade de duas áreas adjacentes no filme e encontrarmos os valores D1 = 2,2 e D2 = 1,8 , o contraste será dado pela diferença entre D2 e D1, e portanto de 0,4. O contraste pode também ser entendido como sendo a capacidade do filme detectar intensidades e energias diferentes de radiação. Imagens com alto contraste permitem em geral melhor qualidade e segurança na interpretação da radiografia. A Radiologia Industrial - Ricardo Andreucci 35 Gradiente Para avaliar o efeito da forma da curva característica do filme radiográfico, podemos empregar outra grandeza denominada “Gradiente”. O gradiente de um filme é numericamente igual à tangente em um certo ponto de sua curva. Quando regiões da curva apresenta um gradiente maior que 1,0 , o contraste é amplificado, da mesma forma, nas regiões em que o gradiente é menor que 1,0 o contraste transmitido pela peça é diminuído. Definição Observando com detalhe a imagem formada no filme radiográfico, veremos que a mudança de densidades de uma área a outra não se faz de maneira brusca. Por exemplo, a imagem de um objeto apresenta um pequeno halo que acompanha as bordas da mesma, com uma densidade intermediária entre a densidade da imagem e a de fundo. Quanto mais estreita for esta faixa de transição a definição será melhor. Processamento do Filme Radiográfico Preparação Inicial: A preparação do filme e dos banhos para o processamento radiográfico deve seguir algumas considerações gerais, necessárias ao bom desempenho desta tarefa. • Limpeza: no manuseio do filme, a l impeza é essencial. A câmara escura, bem como os acessórios e equipamentos, devem ser mantidos rigorosamente limpos, e usados somente para o propósito aos quais eles se destinam. Qualquer líquido de fácil volatilização deve estar acondicionado em recipientes fechados, para não contaminar o ambiente. O termômetro e outros acessórios que manuseados devem ser lavados em água limpa imediatamente após o uso, para evitar a contaminação das soluções. Os tanques devem estar limpos e preenchidos com soluções frescas. • Preparação dos banhos: a preparação dos banhos devem seguir a recomendação dos fabricantes, e preparados dentro dos tanques que devem ser de aço inoxidável ou da matéria sintética, sendo preferível o primeiro material. É importante providenciar agitação dos banhos, utilizando pás de borracha dura ou aço inoxidável ou ainda de material que não absorva e nem reaja com as soluções do processamento. As pás devem ser separadas, uma para cada banho, para evitar a contaminação das soluções. • Manuseio: após a exposição do filme, o mesmo ainda se encontra dentro do porta- filmes plástico, e portanto deverá ser retirado na câmara escura, somente com a luz de segurança acionada. Nesta etapa os filmes deverão ser fixados nas presilhas das colgaduras de aço inoxidável para não pressionar o filme com o dedo, que poderá manchá-lo permanentemente. A Radiologia Industrial - Ricardo Andreucci 36 • Controle da temperatura e do tempo: os banhos de processamento e a revelação devem ser controlados, quanto a temperatura. Normalmente devem estar de acordo com a recomendação do fabricante. Processamento Manual A partir do momento que temos um filme exposto à radiação e passamos então ao processamento, o mesmo passará por uma série de banhos nos tanques de revelação, de acordo com as seguintes etapas: 1 –Preparação dos banhos: a preparação dos banhos devem seguir a recomendação dos fabricantes, e preparados dentro dos tanques que devem ser de aço inoxidável ou da matéria sintética, sendo preferível o primeiro material. É importante providenciar agitação dos banhos, utilizando pás de borracha dura ou aço inoxidável ou ainda de material que não absorva e nem reaja com as soluções do processamento. As pás devem ser separadas, uma para cada banho, para evitar a contaminação das soluções. 2 –Medição da Temperatura: O grau de revelação é afetado pela temperatura da solução: Quando a temperatura aumenta o grau de revelação também aumenta. Desta forma, quando a temperatura do revelador é baixa, a reação é vagarosa e o tempo de revelação que fora recomendado para a temperatura normal (200C), será insuficiente resultando em uma “sub-revelação”. Quando a temperatura é alta, a “sobre-revelação”. Dentro de certos limites, estas mudanças no grau de revelação podem ser compensadas aumentando-se ou diminuindo-se o tempo de revelação. São fornecidas, inclusive, tabelas tempo-temperatura, através das quais pode-se a correção de comparação. 3 – Manuseio: após a exposição do filme, o mesmo ainda se encontra dentro do porta- filmes plástico, e portanto deverá ser retirado na câmara escura, somente com a luz de segurança acionada. Nesta etapa os filmes deverão ser fixados nas presilhas das colgaduras de aço inoxidável para não pressionar o filme com o dedo, que poderá manchá-lo permanentemente. 4 – O dispositivo para medição do tempo necessário para cada passo do processamento, deve ser acionado (cronômetro) 1 - Preparação dos Banhos 2- Medição da Temperatura 3 - Prender dos Filmes 4. Acionamento do Cronômetro A Radiologia Industrial - Ricardo Andreucci 39 10 - Lavagem dos Filmes. Após a fixação, os filmes seguem para o processo de lavagem para remover o fixador da emulsão. O filme é imergido em água corrente de modo que toda superfície fique em contato constante com a água corrente. O tanque de lavagem deve ser suficientemente grande para conter os filmes que passam pelo processo de revelação e fixação, sendo que devemos prever uma vazão de água de de maneira que o volume do tanque seja de 4 a 8 vezes renovado a cada hora. Cada filme deve ser lavado por um período de aproximadamente 30 minutos. Quando se imergem as colgaduras carregadas no banho de lavagem, deve ser adotado um procedimento tal que se as mesmas sejam primeiramente colocadas próximas ao dreno de saída (água mais suja) e sua posição vá mudando o tempo de lavagem de maneira que se termine o banho o mais próximo possível da região de entrada da água, onde a mesma se encontra mais limpa. 9 – Fixação 10- Lavagem com água 11- Distensor 12 - Secagem A temperatura da água no tanque de lavagem é um fator muito importante. Os melhores resultados são obtidos com a temperatura por volta de 20 graus centígrados. Se tivermos altos valores para a mesma, poderemos causar efeitos danosos ao filme, assim como valores baixos poderão reduzir a eficiência. 11 - Além das etapas acima relatadas, é aconselhável, após a lavagem passar os filmes durante mais ou menos 30 segundos, por um quinto banho que tem a finalidade de quebrar a tensão superficial da água, facilitando desta maneira, a secagem e evitando que pequenas gotas de água fiquem presas á emulsão, o que iria acarretar manchas nos filmes depois de secos. 12 - Antes do filme ser colocado no secador, deve-se dependurar as colgaduras em um escorredor por cerca de 2 a 3 minutos. A partir do momento que temos um filme exposto à radiação e passamos então ao processamento, o mesmo passará por uma série de banhos nos tanques de revelação, após o descrito acima , deverá ser feitas as seguintes etapas: A Radiologia Industrial - Ricardo Andreucci 40 Processamento Automático Este sistema de processamento químico e mecânico é utilizado quando há grande volume de trabalho, pois só assim torna-se econômico. O processamento é inteiramente automático sendo que o manuseio só é utilizada para carregamento e descarregamento de filmes. O ciclo de processamento é inferior a 15 minutos. Quando adequadamente mantido e operado, este equipamento produz radiografia de alta qualidade. A alta velocidade de processamento torna-se possível pelo uso de soluções químicas especiais, contínua agitação dos filmes, manutenção da temperatura das soluções e secagem por jatos de ar aquecido. Revelação A imagem latente torna-se visível por ação do agente químico chamado de revelador. A solução reveladora fornece elétrons que migram para grãos que foram sensibilizados pelos raios X, e converte os outros íons de prata que não foram expostos em íons metálicos de cor escura. Isto faz com que apareçam pintas pretas na emulsão. Geralmente, o filme radiográfico é revelado por uma processadora automática onde se mostram os quatro estágios do processamento. Em uma processadora convencional, o filme é revelado por um período entre 20 e 25 segundos. Concentração - o revelador, em geral, é fornecido em forma de um concentrado que deve ser diluídoem água para abastecer a processadora. Se a diluição não for correta haverá alterações na sensibilidade. Taxa de reposição - a revelação do filme consome uma quantidade de solução reveladora e torna o restante menos reativa. Se não houvesse reposição do revelador, a sensibilidade diminuiria gradual-mente. Nas processadoras a reposição é automática. A taxa de reposição depende do tamanho do filme A Radiologia Industrial - Ricardo Andreucci 41 Contaminação - se o revelador for contaminado com outro químico, como o fixador, por exemplo, ocorrerão alterações abruptas na sensibilidade do filme (aumento ou decréscimo), dependendo do tipo e da quantidade de contaminação. É mais provável que a contaminação do revelador ocorra quando os rolos de transporte são removidos ou substituídos. Tempo - quando o filme entra na solução reveladora, a revelação não é instantânea. É um processo gradual durante o qual os grãos são revelados, aumentando a densidade do filme. O processo termina com a saída do tanque de revelação e a ida do filme para o tanque de fixação Geralmente, aumentando-se o tempo de revelação, aumenta-se a sensibilidade do filme, pois menos exposição é necessária para produzir uma determinada densidade óptica. O tempo de processamento é em geral de 20 a 25 s. Temperatura - a atividade do revelador varia com a sua temperatura. Um aumento na temperatura aumenta a taxa da reação, e também aumenta a sensibilidade do produzir uma determinada densidade ótica. Geralmente, a temperatura do revelador está na faixa de 32 a 35 ºC. Fixação Após passar pelo revelador, o filme é transportado para um segundo tanque que contém uma solução fixadora. O fixador é uma mistura de várias soluções químicas que desempenham as funções: Clareamento: a solução fixadora também clareia os grãos de haletos de prata não revelados. Utiliza-se amônia ou tiosulfato de sódio. Os grãos não expostos são retirados do filme e se dissolvem na solução fixa-dora. A prata que se acumula no fixador durante o processo de clareamento pode ser recuperada. Conservação: o sulfato de sódio é usado para proteger o fixador de reações que o deterioram. Lavagem O próximo estágio do filme é passar por um banho de água para retirar dele a solução fixadora em contato com a emulsão. É muito importante que se remova todo o tiosulfato proveniente do fixador. Se o tiosulfato ficar retido na emulsão, ele eventualmente poderia reagir com nitrato de prata e o ar para formar o sulfato de prata, dando a radiografia uma coloração marrom-amarelada. A quantidade de tiosulfato retida na emulsão determina o tempo de vida útil da radiografia do filme processado. O “American National Standart Institute” recomenda uma retenção máxima de 30 µg por polegada quadrada. A Radiologia Industrial - Ricardo Andreucci 44 adioscopia Industrial A radioscopia, é um meio usado para se detectar a radiação que emerge da peça, numa tela fluorescente. As telas fluorescentes se baseiam no princípio que determinados sais (tungstato de cálcio, por exemplo ), possuem a propriedade de emitir luz em intensidade mais ou menos proporcional à intensidade de radiação que incide sobre eles . A radiação é emitida de um tubo de raios X, colocado no interior de um gabinete blindado, atravessando a peça e indo atingir uma tela fluorescente. Este, por sua vez, transforma as intensidades de radiação que emergem da peça em luz de diferentes intensidades, formando na tela a imagem da peça. Essa imagem, refletida em um espelho , é examinada pelo inspetor, a procura de possíveis defeitos. A radioscopia é usada principalmente, no exame de pequenas peças, com espessura baixa. Sua grande vantagem reside na rapidez do ensaio e no seu baixo custo. Em contrapartida, apresenta duas limitações importantes: • Não é possível se inspecionar peças de grande espessura ou de alto número atômico, pois nesse caso a intensidade dos Raios X não seria suficientemente alta para produzir uma imagem clara sobre a tela fluorescente. • Devido às características próprias das telas fluorescentes e à baixa distância foco- tela, usada, a qualidade de imagem na fluoroscopia não é tão boa quanto a da radiografia. • A radioscopia, com imagem visualizada diretamente na tela fluorescente, não fornece um registro que documente o ensaio executado, tão pouco permite a localização precisa na peça das áreas que contém descontinuidades inaceitáveis. R Sistema de radioscopia conven- cional, utilizando um aparelho de Raios X , o sistema de suporte da peça e a tela que forma a imagem radioscópica. (Foto extraída do filme “X Ray Technology- Seifert , cedido por RAIMECK) Tela radioscópica Raios X A Radiologia Industrial - Ricardo Andreucci 45 Como foi descrito acima, a observação da imagem pelo inspetor é feita diretamente na tela fluorescente, ou por reflexão num espelho. Entretanto tal procedimento pode muitas vezes ser perigoso para o operador, pois o mesmo leva muitas horas para a inspeção de componentes de fabricação seriada, principalmente, sendo obrigatório nesses casos a sua substituição após um período de trabalho. Sistema com Tela Fluorescente e Câmera Sistema com uso de Câmera de TV e intensificador ( figuras cedidas pela Seifert - RAIMECK) Os sistemas de TV foram criados para eliminar totalmente os problemas de radioproteção mencionados, pois a captação da imagem, feita diretamente da tela fluorescente, é procedida mediante a utilização do circuito interno de TV, ou seja uma câmera de TV de alta sensibilidade, ligada a um monitor de alta resolução. Deste modo o operador ou inspetor visualiza a imagem no monitor de TV, distante o suficiente para garantir sua segurança radiológica, podendo ainda, caso necessário, registrar as imagens produzidas em vídeo tape (vídeo cassete). Sistema de Radioscopia usando intensificados de imagem com Câmera de TV. Raios X Raios X Objeto Objeto intensificador tela monitor monitor A Radiologia Industrial - Ricardo Andreucci 46 Conversor Universal de Imagem A captura da imagem na forma de um sinal elétrico é feita através de detetores de radiação no estado sólido que tornam possível converter a radiação ionizante em sinal elétrico, conforme mostrado na figura abaixo: Contato Elétrico Radiação Camada de Fósforo Germânio ou Silício Contato Elétrico Eletrodo metálico R i Os detetores de estado sólido são formados pela parte superior que contém um material a base de fósforo que emite luz (cintilação) pela passagem da radiação, que por sua vez incide no núcleo do detetor que por efeito foto-elétrico emite elétrons, dando origem a uma corrente elétrica no terminal do detetor, que é proporcional ao fóton de radiação de entrada. Esta corrente elétrica pode ser usada para gerar imagens em TV, gravação em vídeo, digitalização e outros. FDD FOD attenuation image X-ray tube test sample flat panel detector Data acquisition and digital image processing digital signal monitor image monitor image processing system Sistema de Radioscopia usando captura digital da imagem Esquema de um detetor no estado sólido de germânio ou silício, utilizada São muito sensíveis, e o sinal elétrico que sai do detetor é proporcional ao fóton de radiação que atingiu o detetor. É uma das formas eficazes de transformar a exposição à radiação em sinal elétrico . A Radiologia Industrial - Ricardo Andreucci 49 A seqüência abaixo mostra uma carcaça de bomba de alumínio, inspecionada por tomografia. A figura a seguir mostra a projeção no plano da imagem da peça e à direita o defeito interno. Sequencia a seguir é a imagem volumétrica tomográfica da mesma peça usando Raios X de 225 kV e 1,5 mA, de uma caixa de bomba de Alumínio, mostrando na imagem 1 a peça inteira e na imagem 2 o corte tomográfico indicando por um círculo a presença de um defeito interno. Imagem 1 – Visualização completa Imagem 2 – Visualização em corte. Observe o defeito ( Imagens extraídas do filme “3D Computed Tomography “ produzido pela Seifert - RAIMECK ) A Radiologia Industrial - Ricardo Andreucci 50 adiografia Digital Os métodos de obtenção de imagem através da radiação sem o uso do filme fotográfico, já está disponível a muitos anos, como por exemplo os sistemas de radioscopia com camera de vídeo analógica em tempo real, que evoluíram para o CCD, tubos de raios X microfocus, e finalmente a digitalização da imagem analógica. Porem, nestes sistemas, por melhores que sejam, a qualidade da imagem intrínseca não é comparável à imagem do filme radiográfico convencional, restando assim pouca escolha para a substituição do filme. Quando falamos em qualidade da imagem digital, estamos nos referindo à resolução da imagem. A resolução é definida como sendo a menor separação (distancia) entre dois pontos da imagem que podem ser distinguidas ou visualizadas. O olho humano é o observador final de uma imagem, assim em linguagem simples, a resolução seria "o que o olho consegue ver". A imagem digitalizada é formada por "pixels" ou seja é a célula ou partícula que quando agrupadas formam a imagem digital. Cada "pixel" possui uma única tonalidade de cor e possui a mesma medida horizontal e vertical. Imagem de 1 pixel Imagem de 2 x 2 pixels Imagem de 3 x 4 pixels O número de "pixels' lineares existentes em uma medida padrão, tal como milímetro ou polegada ( p.p.m ou em inglês d.p.m) defini a resolução, e é única para toda a imagem. Por exemplo uma resolução de 6 p.p.m significa que existem 6 pixels em cada medida linear de 1 mm. 1 mm R Imagem com resolução de 6 p.p.m ou d.p.m A Radiologia Industrial - Ricardo Andreucci 51 Sempre haverá perda de qualidade e da resolução de uma imagem digitalizada, quando ampliamos uma outra imagem já digitalizada, a menos que se aumente a quantidade de pixels na mesma proporção da ampliação. Exemplos de graus de resolução diferentes para uma mesma imagem Portanto para avaliar a capacidade de resolução de diferentes sistemas de imagem a quantidade de pixels é fator determinante. Na radiografia digital industrial valores como 2500 x 3000 pixels são comuns para uma boa qualidade de imagem. Outro fator que mede a qualidade é o contraste entre dois pontos adjacentes como uma função da sua distância de separação. Isto é chamado de "Função Modulação de Transferência- MTS" que assume valores de 0 a 1 dependendo do sistema digital usado. Por exemplo, quanto maior for o valor do MTS mais facilmente será visualizada uma descontinuidade. Digitalização de uma imagem com resolução de: 14 pixels x 11 pixels Tamanho da Imagem: 1 kbyte Digitalização da mesma imagem com resolução de: 84 pixels x 63 pixels Tamanho da Imagem: 16 kbytes Digitalização da mesma imagem com resolução de: 640 pixels x 480 pixels Tamanho da Imagem: 900 kbytes A Radiologia Industrial - Ricardo Andreucci 54 Estas radiografias mostram a diferença entre uma imagem original (foto superior) não processada digitalmente e outra (foto inferior) processada pelo sistema digital (Imagens cedidas pela AGFA) • Digitalização de Filmes Radiográficos Um outro método existente para radiografia digital é a obtenção da imagem pelo scaneamento do filme radiográfico, usando um scaner especial de alta resolução. A vantagem desta técnica é passar para o computadora imagem do filme e através do programa, poder ampliar e estudar indicações de descontinuidades presentes na área de interesse. O arquivamento em meio eletrônico também traz vantagens. Radiografia Computadorizada (CR) Imagem Capturada pelo Método Direto (DR) ( Imagens cedidas para AGFA) A Radiologia Industrial - Ricardo Andreucci 55 Radiografia digitalizada de uma peça fundida. Observe as trincas na região marcada. Imagem ampliada digitalmente da região marcada acima. Observe que a visualização das trincas se tornaram mais nítidas, sem perda de qualidade em razão da ampliação. (Imagens cedidas pela AGFA) A Radiologia Industrial - Ricardo Andreucci 56 As principais vantagens da radiografia digital podem ser resumidas nos seguintes: • As placas de captura da imagem digital permitem uma ampla utilização em variadas condições de exposição, possibilitando reutilização imediata caso ocorrer erros na exposição, evitando assim perdas de material e tempo para no ensaio; • A grande latitude de exposição das placas de captura digital permitem a visualização da imagem radiográfica com somente uma pequena exposição à radiação, o que permite melhorar a proteção radiológica da instalação , otimizando a segurança; • As placas de captura possuem longa durabilidade e de boa proteção mecânica, podendo operar em temperaturas de 10 a 35 0C , pesando 8 kg. • Os programas de computador para análise da imagem digital são versáteis, permitindo ampliações localizadas da imagem propiciando maior segurança do laudo radiográfico. Melhoria do contraste por tratamento digital das imagens radiográficas. (Imagens cedidas pela AGFA) Técnica de radiografia digital em uma solda de tubulação. Na foto do meio, a placa digitalizadora da imagem, gira ao redor da solda, por um guia fixado no tubo. A Radiologia Industrial - Ricardo Andreucci 59 A sobreposição deverá ser comprovada através do uso de marcadores de posição que são letras ou números de chumbo fixados na superfície da peça , do lado da fonte de radiação, sempre que possível, e que serão projetados no filme radiográfico quando da exposição. A imagem dos marcadores poderão serem vistos como imagem no filme, evidenciando a sobreposição requerida. Quando o objeto radiografado for plano ou quando a distância fonte-filme for menor que o raio de curvatura da peça, a sobreposição deverá ser calculada pela fórmula: C x e S = --------- + 6 mm Dff onde: S = Sobreposição (mm) C = Comprimento do filme (mm) e = Espessura da peça (mm) Dff =Distância fonte-filme (mm) Sobreposição entre filmes para a cobertura total. A sobreposição correta permite que o volume de solda seja totalmente inspecionado. Na prática, a análise da posição da imagem dos marcadores de posição na radiografia, indica se este procedimento foi adequado. A imagem dos marcadores de posição, podem ser utilizados como referência no filme para localizar na peça possíveis descontinuidades presentes. Utilizando uma máscara da imagem do objeto, feita com papel transparente, é possível registrar as indicações na área de interesse e transportar para a peça, tendo como referência os marcadores de posição. A Radiologia Industrial - Ricardo Andreucci 60 Controle da Sensibilidade Radiográfica Indicadores da Qualidade da Imagem - IQI's (Penetrâmetros) Para que possamos julgar a qualidade da imagem de uma certa radiografia são empregadas pequenas peças chamadas Indicadores de Qualidade de Imagem (IQI), e que são colocadas sobre o objeto radiografado. Os IQI's são também chamados como “Penetrametros”. O tipo ou norma de fabricação do IQI deve ser aquela que o projeto de construção do equipamento a ser radiografado requerer ou mesmo especificações contratuais. O IQI é uma pequena peça construída com um material radiograficamente similar ao material da peça ensaiada, com uma forma geometricamente simples e que contem algumas variações de forma bem definidas tais como furos ou entalhes. IQI ASME e ASTM tipo Furos Os IQI’s americanos mais comuns consistem em uma fina placa de metal contendo três furos com diâmetros calibrados. Os IQI's adotados pela Normas ASME, Sec V SE-1025 ou ASTM E-1025, possuem três furos cujos diâmetros são 4T, 2T, e 1T, onde “T” corresponde à espessura do IQI. Nesses IQI's, a sensibilidade é igual a 2 % da espessura da peça a ser radiografada . Para avaliar a técnica radiográfica empregada, faz-se a leitura do menor furo, que é visto na radiografia. As classes de inspeção mais rigorosas são aquelas que requerem a visualização do menor furo do IQI. Dessa forma, é possível se determinar o nível de inspeção, ou seja, o nível mínimo de qualidade especificado para o ensaio. O nível de inspeção é indicado por dois números em que o primeiro representa a espessura percentual do IQI e o segundo o diâmetro do furo que deverá ser visível na radiografia. Os níveis comuns de qualidade são os seguintes: • Nível 2 - 2T - o furo 2T de um IQI de 2 % da espessura do objeto deve ser visível. • Nível 2 - 4T - o furo de 4T de um IQI de 2 % da espessura do objeto deve ser visível. • Nível 1- 1T - o furo 1T de um IQI de 1 % da espessura do objeto deve ser visível (sensibilidade 1 %). • Nível 1- 2T - o furo 2T de um IQI de 1 % da espessura do objeto deve ser visível (sensibilidade 1 %). • Nível 4- 2T - o furo 2T de um IQI de 4 % da espessura do objeto deve ser visível (sensibilidade 4 %). A Radiologia Industrial - Ricardo Andreucci 61 IQI ASTM Nr. 40 35 T 2T 1T 4T IQI ASTM Nr. 10 IQI ASME ou ASTM tipo furos Esses IQI's devem ser colocados sobre a peça ensaiada, com a face voltada para a fonte e de modo que o plano do mesmo seja normal ao feixe de radiação. Quando a inspeção for feita em soldas, o IQI será colocado no metal de base, paralelo à solda e a uma distância de 3 mm no mínimo. No caso de inspeção de solda, é importante lembrar que a seleção do IQI inclui o reforço, de ambos os lados da chapa. Portanto, para igualar a espessura sob o IQI à espessura da solda, deverão ser colocados calços sob o IQI feitos de material radiograficamente similar ao material inspecionado. Para efeito da determinação da área de interesse não devem ser considerados os anéis ou tiras de cobre-junta caso existam. TABELA 3 - Seleção do IQI ASME / ASTM em função da Espessura do Material Espessura do Material Lado da Fonte Lado do Filme ( Pol.) Desig. IQI Furo essencial Ident. do Fio ( φ fio pol.) Desig. IQI Furo essencial Ident. do Fio ( φ fio pol.) até 6,35 incl. 12 2T 5 (0,008) 10 2T 4 (0,006) acima de 6,35 até 9,52 15 2T 6 (0,010) 12 2T 5 (0,008) acima de 9,52 até 12,70 17 2T 7 (0,013) 15 2T 6 (0,010) acima de 12,70 até 19,05 20 2T 8 (0,016) 17 2T 7 (0,013) acima de 19,05 até 25,40 25 2T 9 (0,020) 20 2T 8 (0,016) acima de 25,40 até 38,10 30 2T 10 (0,025) 25 2T 9 (0,020) acima de 38,10 até 50,80 35 2T 11 (0,032) 30 2T 10 (0,025) acima de 50,80 até 63,50 40 2T 12 (0,040) 35 2T 11 (0,032) acima de 63,50 até 101,60 50 2T 13 (0,050) 40 2T 12 (0,040) Fonte: Código ASME Sec. V , Artigo 2 , Tab. T-276 ou ASTM E-1025 A Radiologia Industrial - Ricardo Andreucci 64 IQI conforme a norma EN-462 Parte 1 (antiga DIN 54109 Part 1) O IQI, sempre que possível, deve ser colocado sobre a solda de forma que os arames estejam perpediculares à linha da solda, e de forma que sua imagem apareça na zona central da radiografia. O número da qualidade de imagem é o número do arame mais fino visível na radiografia. O número de qualidade de imagem requerido, é definido para para cada faixa de espessura de material. A classe de qualidade de imagem A ou B é função do rigor com que a inspeção deve ser feita e deve ser especificado pelo fabricante , código ou projeto do equipamento. TABELA 4 - Seleção de IQI's EN-462 para Técnica de Parede Simples / Lado Fonte A Radiologia Industrial - Ricardo Andreucci 65 Localização e Posicionamento dos IQI's Sempre que possível, o IQI deverá ser colocado no lado da peça, voltado para a fonte. Caso isso não seja possível, o IQI poderá ser colocado no lado voltado para o filme, sendo nesse caso acompanhado de uma letra “F”, de chumbo. Apenas um IQI é geralmente usado para cada radiografia se variações de espessura provocarem uma variação de - 15 % ou + 30% da densidade vista através do corpo do IQI tipo furos ou adjacente ao fio essencial, na área de interesse de uma radiografia, será necessária colocação de um IQI adicional para cada área excepcional , conforme recomenda o Código ASME Sec.V Artigo 2. Em radiografia de componentes cilíndricos (tubos, por exemplo) em que são expostos mais de um filme por sua vez, deverá ser colocado um IQI por radiografia. Apenas no caso de exposições panorâmicas, em que todo o comprimento de uma junta circunferencial é radiografado com uma única exposição, é permitida a colocação de três IQI igualmente espaçados. A disposição em círculo de uma série de peças iguais, radiografadas simultaneamente, não é considerada como panorâmica para efeito de colocação de IQI, sendo necessário que a imagem do mesmo apareça em cada uma das radiografias. Quando porções de solda longitudinal forem radiografadas simultaneamente com a solda circuferencial, IQI adicionais devem ser colocados nas soldas longitudinais, em suas extremidades mais afastadas da fonte. Para componentes esféricos, onde a fonte é posicionada no centro do componente e mais de um filme é exposto simultaneamente deverão ser usados, pelo menos 3 IQI’s, igualmente espaçados, para cada 360 graus de solda circunferencial mais um IQI adicional para cada outro cordão de solda inspecionado simultaneamente. Controle da Radiação Retroespalhada ou Retroespalhamento Quando abordamos a interação da radiação com a matéria vimos que o espalhamento é inerente ao processo de absorção da radiação. São radiações de pequena energia que emergem da peça em direção aleatória. Qualquer material, tal como, o objeto, o chão, as paredes ou outros materiais que recebem o feixe direto de radiação, são fontes de radiação espalhada ou dispersa. A radiação espalhada é também função da espessura do material radiografado, constituindo a maior porcentagem do total de radiação que atinge o filme, nas radiografias de materiais espessos. Como exemplo, podemos afirmar que ao se radiografar uma peça de aço de mm de espessura, a radiação espalhada que emana da peça é quase duas vezes mais intensa que a radiação primária que atinge o filme. A radiação espalhada, portanto, é um fator importante, que produz uma sensível diminuição no contraste do objeto. As telas intensificadoras de chumbo diminuem sensivelmente o efeito das radiações espalhadas, particularmente aquelas que atingem o filme e que possuem baixas energias. A Radiologia Industrial - Ricardo Andreucci 66 Esse efeito contribui para a máxima clareza de detalhes na radiografia. O uso de fonte de radiação com altas energias, propicia não somente o aparecimento das radiações dispersas na peça, como também as radiações retroespalhadas, que da mesma forma empobrecem com a imagem no filme. As radiações retroespalhadas podem ser atenuadas com o uso das telas traseiras, ou filtros que são lâminas de materiais absorvedores (cobre, alumínio, chumbo), dispostos de modo a proteger o filme. Para que exista um controle das radiações retroespalhadas pelo operador, este deve fixar na parte trazeira do chassis, uma letra “B” de chumbo. Caso as radiações retroespalhadas sejam muito intensa, a letra “B” será fortemente projetada na imagem do filme, aparecendo como uma imagem clara no filme, indicando que radiações atingiram o filme por detrás. Radiação Retro-espalhada Cálculo do tempo de Exposição do Filme Radiográfico Lei do Inverso do Quadrado da Distância Quando tratamos dos filmes radiográficos, dissemos que a exposição é representada pelo produto da intensidade da radiação pelo tempo, para uma certa energia em particular. Sabemos, também, que a intensidade de radiação que é emitida pela fonte não é totalmente recebida pelo filme, pois uma parcela é absorvida pelo objeto que será sendo radiografado. Acrescentaremos, agora, que mesmo que não houvesse um objeto entre a fonte e o filme, a intensidade de radiação que o atinge seria menor que aquela emitida pela fonte. A Radiologia Industrial - Ricardo Andreucci 69 (1) (2) Fator de Exposição para Selênio-75 e Irídio-192, para aços carbono Existem outras formas de calcular o tempo de exposição para fontes radioativas, utilizando as curvas de exposição Curies-hora e Espessura de Aço, nessas curvas figuram várias retas representando diferentes densidades radiográficas e elas só podem ser realmente eficientes quando forem obedecidas as condições de revelação, de telas intensificadoras e tipo de filme. Quando for muito pequena ou muito grande a distância fonte-filme utilizada na construção da curva de exposição pode-se alterá-la levando em conta a lei do inverso do quadrado da distância. Para a determinação de um tempo de exposição é necessário, primeiramente a espessura da peça a ensaiar. A seguir, escolhe-se a fonte radioativa e o filme mais apropriado para esse isótopo. Determina-se a atividade da fonte radioativa na hora do ensaio e fixa-se a distância fonte-filme. A seguir, determina-se o tempo de exposição. Filme : Classe 1 Fonte: (1) Selelium -75 (2) Irídio-192 Densidade: 2,0 Ecrans: de Pb Revelação: 8 min. A Radiologia Industrial - Ricardo Andreucci 70 Pode ocorrer, e na prática de fato ocorre muitas vezes, que o tempo de exposição calculado não é adequado porque o fabricante mudou as características de seus filmes, ou porque elas variam em função dos parâmetros e variáveis de processamento. Em qualquer desses casos, só a experiência prática ensinará introduzir modificações oportunas. Fator de Exposição para Co-60 , para aços carbono Curvas de exposição para radiografia O primeiro fator a ser determinado em uma exposição com Raios X, é a voltagem (energia) a ser usada. Essa voltagem deverá ser suficiente para assegurar ao feixe de radiação energia suficiente para atravessar o material a ser inspecionado. Por outro lado, uma energia muito alta irá causar uma diminuição no contraste do objeto, diminuindo a sensibilidade da radiografia. A Radiologia Industrial - Ricardo Andreucci 71 De forma a tornar compatíveis esses dois fatores, foram elaborados gráficos que mostram a máxima voltagem a ser usada para cada espessura de um dado material. É muito importante lembrar que, como materiais diferentes absorvem quantidades diferentes de radiação, existem gráficos para cada tipo de material a ser radiografado. É importante notar que cada gráfico fixa uma série de fatores como segue: - material inspecionado - tipo e espessura das telas - densidade óptica do filme - distância do foco-filme - tipo de filme usado - tempo e temperatura de revelação do filme Se qualquer um desses fatores for alterado, o gráfico perderá a sua validade, fornecendo resultados imprecisos. Outro fator importante, é que esses gráficos somente são válidos, para um determinado aparelho e modelo. Normalmente, os aparelhos de Raios X, são fornecidos com uma série de gráficos que permitem a sua utilização em uma vasta gama de situações. A escolha da miliamperagem e ou do tempo de exposição, prende-se à capacidade do aparelho, usando-se o que for mais conveniente. Relação entre Tempo e Amperagem Em geral podemos relacionar a exposição devido aos Raios X com a corrente (M) e tempo de exposição ( T ). Podemos dizer também que a intensidade de radiação, requerida para uma certa exposição, é inversamente proporcional ao tempo de exposição. M(1) T(2) --------- = --------- M(2) T(1) onde: T(1) = tempo de exposição necessário ao se usar uma corrente M(2) e T(2) = tempo de exposição necessário ao se usar uma corrente M(2) Exemplo 1: Se obtemos uma boa radiografia usando uma corrente de 5 mA e um tempo de 10 minutos, qual corrente necessária para se reduzir o tempo de exposição a 2 minutos ? temos: M(1) = 5 mA T(2) = 2 min T(1) = 10 min M(2) = ? portanto: 5 2 ------- = ------- , M(2) = 25 mA. M(2 ) 10 A Radiologia Industrial - Ricardo Andreucci 74 Exemplo: Pretende-se radiografar uma peça em aço com 25 mm de espessura, utilizando-se 200 kV e 5 mA a 70 cm de distância fonte-filme, utilizando-se filme Classe 2 (D7). Qual o tempo de exposição ? Solução: Analisando o gráfico da figura anterior, temos que, para 25 mm uma exposição de 9 mA..min. Assim para uma amperagem de 5mA, o tempo será 1,8 min, ou seja 1 minuto e 48 segundos. Se caso o operador desejar alterar a dis tância, que é um parâmetro fixo do gráfico, deverá ser utilizado as relações matemáticas estudadas anteriormente. 290 kV 270 kV 250 kV 230 kV 210 kV190 kV170 kV150 kV 300 kV 130 kV110 kV Espessura em mm de aço ERESCO-300 Filme Classe II D.F.F = 700 mm Dens. = 1,7 a 2,0 Amperagem = 5 mA Foco = 2,3 x 2,3 mm T em p o d e E xp o si çã o e m m in u to s 5 50 0 5 10 15 20 25 30 35 40 10 1 100 Grafico para cálculo do tempo de exposição para Raios-X Cedido pela empresa VOITH PAPER Máquinas e Equipamentos Ltda O gráfico acima permite calcular diretamente o tempo de exposição para Raios-X, tendo os alguns parâmetros radiográficos fixados, tais como: Aparelho de raios-X direcional modelo Eresco 300 da Seifert, filmes Classe 2, distância fonte-filme de 700 mm, amperagem 5 mA, densidade radiográfica prevista de 1,7 a 2,0 material aço carbono. Curva de Exposição para Aceleradores Para os aceleradores lineares industriais, os fabricantes fornecem uma curva de exposição que leva em consideração a espessura em aço do objeto e a dose em Gray necessária para sensibilizar o filme radiográfico Classe 2 na densidade 2, como mostrado no gráfico a seguir. A Radiologia Industrial - Ricardo Andreucci 75 O gráfico acima foi reproduzido a partir do catálogo do fabricante VARIAN , aparelho modelo LINATRON 200A. As características do aparelho estão descritas no parágrafo "Aceleradores Lineares". O técnico deve verificar a espessura do objeto, e identificar no gráfico a dose corespondente à espessura. No painel de controle, ajusta-se a dose encontrada no gráfico, o tempo de exposição é automaticamente ajustado no aparelho. A Radiologia Industrial - Ricardo Andreucci 76 Radiografia de uma solda de emenda de um tubo pela técnica PD-VD Exemplo de aplicação do Gráfico: Uma peça em aço carbono com 30 mm de espessura deve ser radiografada com filme Classe 2 , distância fonte filme de 700 mm, usando um aparelho Eresco 300, usando 230 kV. Qual o tempo de exposição ? Solução: Observando o gráfico acima, temos que para 30 mm , o tempo de exposição deve ser aproximadamente de 20 minutos. Técnico de uma companhia aérea preparando a inspeção radiográfica da turbina do avião, utilizando um aparelho de Raios X. A inspeção radiográfica das aeronaves em operação é uma ferramenta indispensável para controlar os componentes , e verificar se os mesmos permanecem na mesma condição de fabricação. Foto extraída do catálogo da Seifert Ensaio Radiográfico da Turbina de um avião A Radiologia Industrial - Ricardo Andreucci 79 écnicas de Exposição Radiográfica As disposições e arranjos geométricos entre a fonte de radiação, a peça, e o filme, devem seguir algumas técnicas especiais tais que permitam uma imagem radiográfica de fácil interpretação e localização das descontinuidades rejeitadas. Algumas destas técnicas que apresentamos a seguir são largamente utilizadas e recomendadas por normas e especificações nacionais e internacionais. Técnica de Parede Simples (PSVS) Essa técnica é assim chamada pois no arranjo entre a fonte de radiação, peça e filme, somente a seção da peça que está próxima ao filme será inspecionada e a projeção será em apenas uma espessura do material. É a principal técnica utilizada na inspeção radiográfica , e a mais fácil de ser interpretada. FONTE FONTE Fonte FILMES FILME FILMES (A) (B) (C) Técnica de exposição parede simples - vista simples Exposição Panorâmica Esta técnica constitui um caso particular da técnica de parede simples vista simples descrita acima , mas que proporciona alta produtividade em rapidez num exame de juntas soldadas circulares com acesso interno. T A Radiologia Industrial - Ricardo Andreucci 80 Na técnica panorâmica a fonte de radiação deve ser centralizada no ponto geométrico eqüidistante das peças e dos filmes, ou no caso de juntas soldadas circulares a fonte deve ser posicionada no centro da circunferência. Com isso numa única exposição da fonte, todos os filmes dispostos a 360 graus serão igualmente irradiados, possibilitando assim o exame completo das peças ou das juntas. Técnica Radiográfica Panorâmica numa solda entre cilindro fundo de um vaso de pressão. Observe as marcações das posições dos filmes radiográficos ao redor da solda na foto do lado esquerdo e a posição da fonte no interior do vaso na foto do lado direito. Técnica de Parede Dupla Técnica de Parede Dupla Vista Simples (PDVS): Nesta técnica de parede dupla vista simples , o feixe de radiação, proveniente da fonte, atravessa duas espessuras da peça, entretanto projeta no filme somente a seção da peça que está mais próxima ao mesmo . Freqüentemente esta técnica é utilizada em inspeções de juntas soldadas, as quais não possuem acesso interno, por exemplo tubulações com diâmetros maiores que 3.½ polegadas, vasos fechados, e outros. É importante lembrar que esta técnica requer que a radiação atravesse duas espessuras da peça e portanto o tempo de exposição será maior que a inspeção pela técnica de parede simples. Assim, esta opção deverá ser selecionada quando outra técnica não for possível ou permitida. A Radiologia Industrial - Ricardo Andreucci 81 Fonte Filme Filme Fonte Tubo Tubo Tubo (A) ( B) Técnica de exposição parede dupla e vista simples (A) e parede dupla e vista dupla (B) Técnica de Parede Dupla Vista Dupla (PDVD) Neste caso o feixe de radiação proveniente da fonte, também atravessa duas espessuras, entretanto projetará no filme a imagem de duas seções da peça, e serão objetos de interesse. Nesta técnica o cálculo do tempo de exposição deve ser levado em conta as duas espessuras das paredes que serão atravessadas pela radiação. A técnica de parede dupla e vista dupla (PDVD) é freqüentemente usada para inspeção de juntas soldadas em tubulações com diâmetros menores que 3.½ polegadas. A foto ao lado mostra um equipamento especial para radiografias de tubulações pela técnica de PS-VS, denominado de Crawler. O equipamento é introduzido dentro da tubulação, por onde percorre toda sua extensão, parando nos pontos onde a radiografia será feita. O controle da movimentação do equipamento é feita pelo lado externo da tubulação, remotamente. A Radiologia Industrial - Ricardo Andreucci 84 Solda contendo porosidade (Fotos extraídas do livro "Nondestructive Testing Handbook - ASNT) • Inclusão de Escória São devidas ao aprisionamento de escória ou materiais estranhos durante o processo de soldagem. Elas apresentam-se com mais frequência em soldas de passes múltiplos, principalmente quando a limpeza não é bem efetuada entre um passe o outro. Aparência radiográfica de soldas contendo inclusões de escória. A Radiologia Industrial - Ricardo Andreucci 85 • Inclusão de Escória em Linha. Inclusões de Escória em Linha, ou “Linha de Escória” é caso particular de inclusão, que se manifesta radiograficamente sob a forma de linhas contínuas ou intermitentes. Elas são causadas por insuficiente limpeza das bordas de um determinado passe e são aprisionadas pelo passe seguinte. • Falta de Penetração Consideramos falta de penetração, como sendo a falta de material depositado na raiz da solda, devido ao fato do material não ter chegado até a raiz. No caso de não haver passe de raiz (selagem) a falta de penetração pode ficar aparente. A aparência radiográfica em ambos os casos é uma linha escura, intermitente ou contínua, no centro do cordão. Fotos de uma solda contendo falta de penetração na raiz (Fotos extraídas do livro "Nondestructive Testing Handbook - ASNT) • Trincas As trincas são descontinuidades produzidas por rupturas no metal como resultado de tensões produzidas no mesmo durante a soldagem, sendo mais visível na radiografia, quando o feixe de radiação incide sobre a peça numa direção sensivelmente paralela ao plano que contém a trinca. A trinca produz uma imagem radiográfica na forma de uma linha escura com direção irregular. A largura desta linha dependerá da largura da trinca. Se a direção do plano que contém a trinca coincide com feixe de radiação, sua imagem será bem escura. De outra forma, ela perderá densidade, podendo até não aparecer. Devido ao fato das trincas serem o mais grave defeito de uma solda, devemos ter uma atenção especial para a sua detecção. A imagem das trincas, especialmente em filmes de granulação grossa pode não ser muito clara. A Radiologia Industrial - Ricardo Andreucci 86 No caso de dúvidas por parte do inspetor, seria aconselhável uma mudança na direção do feixe de radiação e a utilização de filmes de granulação fina. Pode ocorrer, também, o fato das trincas não serem detectadas, principalmente quando radiografamos peças de grande espessura. Seção de uma solda contendo poro e uma trinca longitudinal no cordão • Falta de Fusão Descontinuidades em duas dimensões, devido a uma falta de fusão entre o metal depositado e o metal base. A falta de fusão só é bem caracterizada numa radiografia quando a direção do feixe incidente coincide com o plano do defeito. A imagem radiográfica da falta de fusão é uma linha escura, estreita, paralela ao eixo da solda, em um ambos os lados. Seção de uma solda contendo uma falta de fusão junto ao chanfro no cordão (Fotos extraídas do livro "Nondestructive Testing Handbook - ASNT) A Radiologia Industrial - Ricardo Andreucci 89 Qualquer grupo de indicações alinhadas que tenham um comprimento agregado maior que t num comprimento de 6.t ou proporcionalmente para radiografias menores que 6.t, exceto, quando a distância entre duas imperfeições sucessivas exceder a 3.L onde L é o comprimento da mais longa imperfeição no grupo. 6.t L1 L2 L3 Ln C cordão de solda Obs: C < 3 x o comprimento da maior indicação do grupo L1 + L2 + L3 + .... + Li < t ( espessura do metal base) O máximo comprimento de uma indicação aceitável deve ser de ¾ pol. Qualquer indicação menores que ¼ pol. deve ser aceitável para qualquer espessura da chapa. (3) Indicações arredondadas não é fator para aceitabilidade de soldas. A aceitação de descontinuidades arredondadas deverá ser resultado de um acordo entre fabricante e cliente. A radiografia "Spot" estabelece que se um filme apresenta descontinuidade considerada rejeitada , então deve-se ampliar a amostragem , radiografando mais dois filmes adjacentes ao rejeitado, na mesma junta soldada. Caso , pelo menos um desses filmes adicionais mostrarem descontinuidades inaceitáveis, toda a solda inspecionada deve ser julgada inaceitável. A Radiologia Industrial - Ricardo Andreucci 90 • Critério de Aceitação para qualificação de soldadores e operadores de soldagem conforme ASME Sec.IX , QW-191 Indicações do tipo linear: Qualquer tipo de trinca, ou zona de fusão incompleta, ou falta de penetração; Qualquer inclusão de escória alongada, que tenha um comprimento maior que: a) 3 mm para espessuras t até 10 mm, inclusive; b) 1/3. t, para t acima de 10 mm e até 55 mm, inclusive; c) 20 mm para t acima de 55 mm. Qualquer grupo de inclusões de escórias que estejam em alinhamento e que tenha um comprimento acumulado maior do que t numa extensão igual a 12 t, exceto nos casos em que a distância entre imperfeições sucessivas seja maior do que 6L, onde L é o comprimento da imperfeição mais alongada verificada no agrupamento. Indicações de formato arredondado A dimensão máxima permissível para as imperfeições de formato arredondado é 20% de t ou 3 mm, a que for menor. Para as soldas de materiais com espessuras menores do que 3 mm, a quantidade máxima aceitável de imperfeições de formato arredondado não deve ser superior a 12 em um comprimento de solda de 150 mm. Para comprimentos de solda inferiores a 150 mm, deve ser permitida uma quantidade de imperfeições proporcionalmente menor. Para soldas em materiais de espessura igual ou maior do que 3 mm, os gráficos estabelecidos no ASME Sec. IX , indicam os limites máximos permissíveis para essas imperfeições, ilustradas com as configurações típicas: em agrupamentos, diversificadas ou dispersas de forma aleatória. As imperfeições de formato arredondado menores do que 0,8 mm não devem ser consideradas no julgamento das radiografias, quando da aprovação dos corpos de prova de soldadores e operadores nessas faixas de espessuras de materiais. A Radiologia Industrial - Ricardo Andreucci 91 Exemplo de Relatório de Ensaio Radiográfico A Radiologia Industrial - Ricardo Andreucci 94 3 hot-dogs, um contaminado 3 frituras 2 doces (contendo contaminates) fio metálico A Irradiação de Alimentos para sua Preservação O Conceito de Dose Absorvida: Quando a matéria é atravessada por qualquer forma de radiação ionizante, pares de íons são produzidos e átomos e moléculas são excitados, havendo absorção de parte dessa energia transferida. Estes pares de íons podem ter energia suficiente para produzir novas ionizações e excitações. Estas ionizações são as responsáveis pelos efeitos biológicos das radiações. A Dose devida à exposição à radiação eletromagnética, elétrons, alfa, nêutrons, é definida como sendo a energia absorvida ou transferida por unidade de massa do produto ou objeto irradiado. Assim, a unidade de medida é ergs / g ou Joule / kg. Na unidade usual a dose absorvida é o Gray (Gy) . suco com preenchimento mínimo de +10 %, aprovado A Radiologia Industrial - Ricardo Andreucci 95 1 J / kg = 1 Gray (Gy) A título de exemplo, para uma massa de 1 g de água , exposta a 2,58 x 10-4 C/kg (1 R) de radiação X ou Gama, a dose absorvida será de aproximadamente 9,3 mGy ( 0,93 rads). Como curiosidade, podemos citar que uma dose absorvida de 10 kGy por 1 g de água equivale à energia calorífera requerida para aumentar a temperatura de 2,4 0C, por outro lado para elevarmos a temperatura de 1 g de gelo de zero até 20 0C serão necessários 42 kGy. A unidade de dose de radiação “Gray” é muito importante para o controle da exposição dos alimentos, assim como os efeitos que isso pode causar. Os Tipos de Contaminantes, Bactérias e Patogenias mais Comuns nos Alimentos A Salmonela As Salmonelas são bactérias Gram-negativas e constituem um gênero extremamente heterogêneo, composto por duas espécies, Salmonella bongori e S. enterica, essa última possuindo quase 2000 sorotipos. Dentre os de maior importância para a saúde humana destacam-se Salmonella enterica sorotipo Typhi (S. typhi), que causa infecções sistêmicas e febre tifóide – doença endêmica em muitos países em desenvolvimento – e Salmonella enterica sorotipo Typhimurium (S. typhimurium), um dos agentes causadores das gastroenterites. Nas unidades antigas a dose era medida em rads , que valia: 1 rad = 100 ergs/g ou seja 1 Gy = 100 rads A Radiologia Industrial - Ricardo Andreucci 96 A Salmonela é transmitida ao homem através da ingestão de alimentos contaminados com fezes animais. Os alimentos contaminados apresentam aparência e cheiro normais e a maioria deles é de origem animal, como carne de gado, galinha, ovos e leite. Entretanto, todos os alimentos, inclusive vegetais,, podem tornar-se contaminados. É muito freqüente a contaminação de alimentos crus de origem animal. Por ser um patógeno intracelular, S. enterica tem sido um dos organismos preferidos pelos microbiologistas moleculares para identificar e elucidar fatores de virulência bacterianos. Nos últimos anos, acumulam-se informações sobre os mecanismos de interação e patogenia da Salmonella com as células hospedeiras. Esse conhecimento se deve principalmente à grande similaridade dessa bactéria com a Escherichia coli, permitindo a utilização de instrumentos e técnicas em genética já desenvolvidos e conhecidos. Muitos trabalhos já comprovaram a habilidade de linhagens vivas atenuadas de Salmonella em induzir potente resposta imunológica, celular e humoral, após vacinação. Além disso, já foram estabelecidos alguns sistemas eficientes para a produção heteróloga de proteínas em Salmonella. Isto torna particularmente atrativo o uso dessas bactérias como sistemas de administração de antígenos de diversos patógenos como vírus, bactérias e parasitos, proporcionando uma base para o desenvolvimento de novas vacinas. Bactéria do gênero Salmonella vista por microscopia eletrônica. (www.uea.ac.uk/.../images/ large/salmonella.jpg) Clostrídios A bactéria responsável por esse tipo de intoxicação alimentar, o Clostridium prefringes, pode se permanecer ativa durante o cozimento dos alimentos. Os pratos à base de carne, como os ensopados e as tortas, por exemplo, são particularmente suscetíveis ao
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved