Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

História da Derivada, Notas de estudo de Engenharia Química

História da Derivada

Tipologia: Notas de estudo

2011

Compartilhado em 18/01/2011

andrehlsouza
andrehlsouza 🇧🇷

4.8

(46)

58 documentos

Pré-visualização parcial do texto

Baixe História da Derivada e outras Notas de estudo em PDF para Engenharia Química, somente na Docsity! História da Derivada A derivada tem dois aspectos básicos, o geométrico e o computacional. Além disso, as aplicações das derivadas são muitas: a derivada tem muitos papéis importantes na matemática propriamente dita, tem aplicações em física, química, engenharia, tecnologia, ciências, economia e muito mais, e novas aplicações aparecem todos os dias. A origem da derivada está nos problemas geométricos clássicos de tangência, por exemplo, para determinar uma reta que intersecta uma dada curva em apenas um ponto dado. Euclides (cerca de 300 a.C.) provou o familiar teorema que diz que a reta tangente a um círculo em qualquer ponto P é perpendicular ao raio em P. Arquimedes (287--212 a.C.) tinha um procedimento para encontrar a tangente à sua espiral e Apolônio (cerca de 262--190 a.C.) descreveu métodos, todos um tanto diferentes, para determinar tangentes a parábolas, elipses e hipérboles. Mas estes eram apenas problemas geométricos que foram estudados apenas por seus interesses particulares limitados; os gregos não perceberam nenhuma linha em comum ou qualquer valor nestes teoremas. Problemas de movimento e velocidade, também básicos para nosso entendimento de derivadas hoje em dia, também surgiram com os gregos antigos, embora estas questões tenham sido originalmente tratadas mais filosoficamente que matematicamente. Os quatro paradoxos de Zenon (cerca de 450 a.C.) se apóiam sobre dificuldades para entender velocidade instantânea sem ter uma noção de derivada. Na Física de Aristóteles (384--322 B.C.), os problemas de movimento estão associados intimamente com noções de continuidade e do infinito (isto é, quantidades infinitamente pequenas e infinitamente grandes). Na época medieval, Thomas Bradwardine (1295--1349) e seus colegas em Merton College, Oxford, fizeram os primeiros esforços para transformar algumas das idéias de Aristóteles sobre movimento em afirmações quantitativas. Em particular, a noção de velocidade instantânea tornou-se mensurável, pelo menos em teoria; hoje, é a derivada (ou a taxa de variação) da distância em relação ao tempo. Foi Galileu Galilei (1564--1642) quem estabeleceu o princípio que matemática era a ferramenta indispensável para estudar o movimento e, em geral, ciência: “Filosofia [ciência e natureza] está escrita naquele grande livro o qual está diante de nossos olhos – quero dizer o universo – mas não podemos entendê-lo se não aprendermos primeiro a linguagem... O livro está escrito em linguagem matemática ...” Galileu estudou o movimento geometricamente; usou as proporções clássicas de Euclides e propriedades das cônicas de Apolônio para estabelecer relações entre distância, velocidade e aceleração. Hoje, estas quantidades variáveis são aplicações básicas das derivadas. O interesse em tangentes a curvas reapareceu no século 17 como uma parte do desenvolvimento da geometria analítica. Uma vez que equações eram então usadas para descrever curvas, o número e variedade de curvas aumentou tremendamente naqueles estudos em épocas clássicas. Por exemplo, Pierre Fermat (1601--1665) foi o primeiro a considerar a idéia de uma família inteira de curvas de uma só vez. Ele as chamou de parábolas superiores, curvas da forma y = kxn, onde k é constante e n = 2, 3, 4, … A introdução de símbolos algébricos para estudar a geometria de curvas contribuiu significativamente para o desenvolvimento da derivada, da integral e do cálculo. Por outro lado, como conclusões e resultados geométricos poderiam ser obtidos mais facilmente usando raciocínio algébrico que geométrico, os padrões de rigor lógico que tinham sido iniciados pelos gregos antigos foram relaxados em muitos problemas de cálculo, e isto (entre outros fatores) levou a controvérsias espirituosas e até amarguradas. Fermat desenvolveu um procedimento algébrico para determinar os pontos mais altos (máximos) e mais baixos (mínimos) sobre uma curva; geometricamente, ele estava encontrando os pontos onde a tangente à curva tem inclinação zero. René Descartes (1596--1650) teve o discernimento de prever a importância da tangente quando, em sua Geometria, escreveu “E eu ouso dizer isto [encontrar a normal, ou perpendicular a uma curva, a partir da qual podemos facilmente identificar a tangente] não é apenas o problema mais útil e geral da geometria que conheço, mas até aquele que sempre desejei conhecer.” Descartes inventou um procedimento de dupla raiz para encontrar a normal e então a tangente a uma curva. Como resultado da tradução da Geometria de Descartes para o latim por Frans van Schooten (1615--1661) e as explicações abrangentes por Schooten, Florimonde de Beaune (1601--1652) e Johan Hudde (1628-1704), os princípios e benefícios da geometria analítica tornaram-se mais amplamente conhecidos. Em particular, Hudde simplificou a técnica da dupla raiz de Descartes para determinar pontos máximos e mínimos sobre uma curva; o procedimento da dupla raiz foi redescoberto por Christiaan Huygens (1629-1695). Então, modificando o processo da tangente de Fermat, Huygens inventou uma seqüência de etapas algébricas que produziu os pontos de inflexão de uma curva; veremos que isto requer a derivada segunda. René François de Sluse (1622--1685) desenvolveu uma técnica algébrica que levou à inclinação da tangente a uma curva. No final da década de 1650, havia grande correspondência entre Huygens, Hudde, van Schooten, Sluse e outros sobre tangentes de várias curvas algébricas; Hudde e Sluse especialmente procuraram métodos algébricos mais simples e padronizados que poderiam ser aplicados a uma variedade maior de curvas. Para Gilles Personne de Roberval (1602--1675), uma curva era o caminho de um ponto se movendo, e ele desenvolveu um método mecânico para encontrar a tangente para muitas curvas, incluindo a ciclóide. Mas o método de Roberval não podia ser generalizado para incluir mais curvas. Isaac Newton (1642--1727) começou a desenvolver o seu “cálculo de flúxions” entre os seus primeiro esforços científicos em 1663. Para Newton, movimento era a “base fundamental” para curvas, tangentes e fenômenos relacionados de cálculo e ele desenvolveu seus flúxions a partir da versão de Hudde do procedimento da dupla raiz. Newton estendeu esta técnica como um método para encontrar a curvatura de uma curva, uma característica que agora sabemos ser uma aplicação da derivada segunda. Em 1666, 1669 e 1671, Newton resumiu e revisou seu trabalho de cálculo e estes manuscritos circularam entre um grande número de seus colegas e amigos. Ainda assim, embora tenha continuado a retornar a problemas de cálculo em épocas diferentes de sua vida científica, os trabalhos de Newton sobre cálculo não foram publicados até 1736 e 1745. Com algum tutoramento e conselho de Huygens e outros, Gottfried Wilhelm Leibniz (1646--1716) desenvolveu seu cálculo diferencial e integral durante o período entre 1673 e 1676 enquanto vivia como um diplomata em Paris. Em uma pequena viagem a Londres, onde participou de um encontro da Sociedade Real em 1673, Leibniz aprendeu o método de Sluse para encontrar tangentes a curvas algébricas. Leibniz tinha pouca inclinação para desenvolver estas técnicas e interesse ainda menor em fundamentações matemáticas (isto é, limites) necessárias, mas ele aperfeiçoou as fórmulas modernas e a notação para derivada no seu famoso artigo "New methods for maximums and minimums, as well as tangents, which is neither impeded by fractional nor irrational quantities, and a remarkable calculus for them" (Novos métodos para máximos e mínimos, assim como tangentes, os quais não são impedidos por quantidades fracionárias e irracionais, e um cálculo notável para eles) de 1684. Aqui está o primeiro trabalho publicado em cálculo e de fato a primeira vez que a palavra “cálculo” foi usada em termos modernos. Agora, qualquer um poderia resolver problemas de tangentes sem ser especialista em geometria, alguém poderia simplesmente usar as fórmulas de “cálculo” de Leibniz. Algumas vezes se diz que Newton e Leibniz “inventaram” o cálculo. Como podemos ver, isto é simplificação exagerada. Em vez disso, como Richard Courant (1888--1972) observou, cálculo tem sido “uma luta intelectual dramática que durou 2500 anos”. Depois de 1700, circunstâncias levaram a um dos episódios mais tristes e
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved