Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Testes de Hipoteses (3), Teses (TCC) de zootecnia

teste de hipotese

Tipologia: Teses (TCC)

2010

Compartilhado em 06/12/2010

lenice-mendonca-de-menezes-7
lenice-mendonca-de-menezes-7 🇧🇷

5

(2)

18 documentos

1 / 38

Documentos relacionados


Pré-visualização parcial do texto

Baixe Testes de Hipoteses (3) e outras Teses (TCC) em PDF para zootecnia, somente na Docsity! Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILA 2 H0:  = 60 H1:  ≠ 60 Exemplo 1. Considere que uma industria compra de um certo fabricante, pinos cuja resistência média à ruptura é especificada em 60 kgf (valor nominal da especificação). Em um determinado dia, a indústria recebeu um grande lote de pinos e a equipe técnica da industria deseja verificar se o lote atende as especificações. Teste De Hipóteses. H0: O lote atende as especificações H1: O lote não atende as especificações Seja a v.a X : resistência à ruptura X~N(; 25) (Hipóteses simples) (Hipóteses Composta bilateral) (Hipóteses nula) (Hipóteses alternativa) 5 Procedimento (teste) 0 0 H se-ita H se-Rejeita AceRxSe RxSe c c   6 Tipos de Erros Erro tipo I: Rejeitar H0 quando de fato H0 é verdadeiro. Erro tipo II: Não rejeitamos H0 quando de fato H0 é falsa. Exemplo 2: Considere o exemplo 1. H0: Aceitar o lote H1: Não aceitar o lote Erro tipo I: Não aceitar o lote sendo que ela está dentro das especificações. Erro tipo II:Aceitar o lote sendo que ela está fora das especificações. Situação Decisão Ho verdadeira Ho falsa Não rejeitar Ho Decisção correta Erro II Rejeitar Ho Erro I Decisão correta 7 Exemplo 3: Considerando as hipóteses do exemplo 1: H0:  = 60 contra H1:  ≠ 60.  60:|5,575,62 0   HXouXP P(Erro tipo I)= (nível de significância) )verdadeira|HRejeitar ( 00 HP ).16/25,60(~,0 NXHSob         0445,002275,002275,022 16/25 605,57 16/25 60 16/25 605,62 16/25 60 60:|5,5760:|5,62 00                     ZPZP X P X P HXPHXP  ).falso|Hrejeitar Não()( 00 HPIIErroP   ).falsoé|Rejeitar (1 0HP  Poder do teste 10 Testes bilaterais e unilaterais Se a hipótese nula e alternativa de um teste de hipóteses são: 01 00 : :     H H onde o é uma constante conhecida, o teste é chamada de teste bilateral. Em muitos problemas tem-se interesse em testar hipótese do tipo: 01 00 : :     H H o teste é chamado de teste unilateral esquerdo. E quando 01 00 : :     H H o teste é chamada de teste unilateral direito. 11 Exemplo 4: Uma região do país é conhecida por ter uma população obesa. A distribuição de probabilidade do peso dos homens dessa região entre 20 e 30 anos é normal com média de 90 kg e desvio padrão de 10 kg. Um endocrinologista propõe um tratamento para combater a obesidade que consiste de exercícios físicos, dietas e ingestão de um medicamento. Ele afirma que com seu tratamento o peso médio da população da faixa em estudo diminuirá num período de três meses. Neste caso as hipóteses que deverão ser testados são: 90: 90: 1 0     H H onde  é a média dos pesos do homens em estudo após o tratamento. 12 Exemplo 5: Um fabricante de uma certa peça afirma que o tempo médio de vida das peças produzidas é de 1000 horas. Suponha que os engenheiros de produção têm interesse em verificar se a modificação do processo de fabricação aumenta a duração das peças 1000: 1000: 1 0     H H sendo  o tempo médio das peças produzidas pelo novo processo. 15 (iii) É razoável, rejeitar H0 em favor de H1, se a média amostral X é demasiado pequena em relação 0. A região crítica, então poderia ser obtido, selecionando um k da média amostral, de maneira que Rc={ X  k } onde k é tal que ):|( 00  HkXP =. Ou seja sob H0                        n k zP n k n X P /// 000           n zXRc n zkz n k       0 0 0 (iv) Conclusão: se        n zXRcx  0 , rejeita-se H0 em caso contrário não se rejeita H0. 16 Método alternativo Um método alternativo prático é trabalhar diretamente na escala Z 0100 :contra:)(   HHi (ii) A estatística de teste )1,0(~ 0 0 N n X Z Hsob   (iii) A região crítica para um nível de significância  fixado  zZRzRc  ; z iv) se  zZRcz obs  , rejeita- se H0 em caso contrário não se rejeita H0. 17 Exemplo Um comprador de tijolos acha que a qualidade dos tijolos está diminuindo. De experiências anteriores, considera-se a resistência média ao desmoronamento de tais tijolos é igual a 200 kg, com um desvio padrão de 10 kg. Uma amostra de 100 tijolos, escolhidos ao acaso, forneceu uma média de 195 kg. Ao nível de significância de 5%, pode-se afirmar que a resistência média ao desmoronamento diminuiu? KgH KgH i 200: 200: :sãointeressedehipótesesAs)( 1 0     (ii) A estatística do teste é a média amostral X . Já que n=100  30, tem-se que sob H0 X ~      100 100 ,200N . (iii) A região crítica, então poderia ser obtido, selecionando um k da média amostral, de maneira que Rc={ X  k } onde k é tal que ):|( 00  HkXP ==0,05. Ou seja sob H0 20 Procedimento Geral A seguir é apresentado o procedimento geral de teste de hipóteses para uma média populacional considerando o procedimento alternativo descrito acima.  BilateralDireitoUEsquerdoU HHH HouHouH i 01 . 01 . 01 00000000 ::: :)(:)(: )(     (ii) A estatística de teste (a) Quando a variância e conhecida )1,0(~ 0 0 N n X Z Hsob   21 (b) Quando a variância é desconhecida e amostra pequenas )1(~ 0 0    nt n S X T Hsob  (iii) A região crítica para um nível de significância  fixado  cZRzR Zc  ;)(  cTTzR Tc  ;)(  cZRzR Zc  ;)(  cTTzR Tc  ;)(  cZRzR Zc  ;)(  cTTzR Tc  ;)( (iv) Se a ETobs RC., rejeita-se Ho em caso contrário não se rejeita H0. 22 Os registros dos últimos anos de um colégio atestam para calouros admitidos uma nota média 115 (teste vocacional). Para testar a hipóteses de que a média de uma nova turma é a mesma das turmas anteriores, retirou-se, ao acaso, uma amostra de 20 notas, obtendo-se média 118 desvio padrão 20. Use =0,05 115: 115: )( 1 0     H H i :sãointeressedehipótesesAs )1(~ 115 0    nt n S X T Hsob (ii) A estatística de teste Supondo que as notas dos novos calouros tem distribuição normal com média  e desvio padrão  Exemplo 25 Um estudo é realizado para determinar a relação entre uma certa droga e certa anomalia em embriões de frango. Injetou-se 50 ovos fertilizados com a droga no quarto dia de incubação. No vigésimo dia de incubação, os embriões foram examinados e 7 apresentaram a anomalia. Suponha que deseja-se averiguar se a proporção verdadeira é inferior a 25% com um nível de significância de 0,05. Exemplo 25,0: 25,0: )( 1 0   pH pH i :sãointeressedehipótesesAs (ii) A estatística de teste )1,0(~ 50 )25,01(25,0 25,0ˆ 0 N p Z Hsob   26 (iii) A região crítica para um nível de significância =0,05 fixado  64,1;  RRzRc iv) Do enunciado temos n=50, 14,0 50 7 ˆ p : cobs Rz    7963,1 50 75,0025 25,014,0  rejeita-se H0. ao nível de 5% de significância. 27 nXX ,,1  mYY ,,1        n NX 2 1 1,~         m NY m 2 2 ,~   População 1 População 2        mn NYX 2 2 2 1 21 ,~   Inferência Para Duas Amostras 30 Exemplo 1: Estuda-se o conteúdo de nicotina de duas marcas de cigarros (A e B), obtendo-se os seguintes resultados. A: 17; 20; 23; 20 B: 18; 20; 21; 22; 24 Admitindo que o conteúdo de nicotinas das duas marcas tem distribuição normal e que as variâncias populacionais são iguais, com =0,05, pode-se afirmar que existe alguma diferença significativa no conteúdo médio de nicotina nas duas marcas? Sejam X: O conteúdo de nicotina da marca A Y: : O conteúdo de nicotina da marca B ),(~ 2 11 NX ),(~ 2 22 NY Nosso interesse é testar as seguintes hipóteses: 211 210 : :     H H 0: 0: 211 210     H H (i) 31 BA 24 23 22 21 20 19 18 17 Marca C on te úd o N ic ot in a Boxplots do Conteúdo de Nicotina por Marca 521,5 620,4 2 2 2 1   SYm SXn A estatística de teste é dada por: )2( 11 ~ 0 2           mnt mn S YX T Hsob p (ii) 32 (iii) A região crítica, para =0,05, (parte achurada) representa os valores correspondente da distribuição t-Student com n+m- 2=4+5-2=7 graus de liberdade com mostra a figura  365,2||);7(  TttRc 35 Suponha que tem-se duas amostras independentes de tamanhos n e m suficientemente grandes (n>30 e m>30), de duas populações Bernoulli, com probabilidades de sucessos p1 e p2 respectivamente. E sejam X: o número de sucessos na amostra de tamanho n e Y: o número de sucessos na amostra de tamanho m. Portanto, X~B(n,p1 e Y~ B(m,p2). Há interesse em verificar as seguintes hipóteses estatística: Teste de hipóteses para 21 pp   BilateralDireitoUEsquerdoU ppHppHppH ppHpouppHpouppH i 211 . 211 . 211 21022102210 ::: :)(:)(: )(   (ii) A estatística de teste )1,0(~ 11 )1( ˆˆ 0 21 N mn pp pp Z HSob          36 mn pmpn mn yx p; m y p, n x p       21 21 ˆˆ ˆˆonde Os passos (iii) e (iv) são equivalentes ao procedimento de teste para uma média populacional. Exemplo 3: Dois tipos de solução de polimento estão sendo avaliados para possível uso em uma operação de polimento na fabricação de lentes intra-oculares usadas no olho humano depois de uma operação de catarata. Trezentas lentes foram polidas usando a primeira solução de polimento e, desse número 253 não tiveram defeitos induzidos pelo polimento. Outras 300 lentes foram polidas, usando a segunda solução de polimento sendo 196 lentes consideradas satisfatórios. Há qualquer razão para acreditar que as duas soluções diferem? Use =0,01. 37 X: o número de lentes sem defeito das 300 polidas com a 1ª solução, X~B(300,p1) Y: o número de lentes sem defeito das 300 polidas com a 2ª solução Y~B(300,p2). 211 210 : : ppH ppH   )1,0(~ 11 )1( ˆˆ 0 21 N mn pp pp Z HSob          (ii) A estatística de teste Nosso interesse é testar as seguintes hipóteses:
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved