Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

LinguagemC UFMG, Notas de estudo de Engenharia Civil

Apostila de C, apresenta conceitos basicos

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 21/03/2007

shdw-x89-4
shdw-x89-4 🇧🇷

1 documento

Pré-visualização parcial do texto

Baixe LinguagemC UFMG e outras Notas de estudo em PDF para Engenharia Civil, somente na Docsity! 1 - 1 - Curso de Linguagem C UFMG Universidade Federal de Minas Gerais 2 Esta apostila foi elaborada com o conteúdo do site do Curso de Linguagem C da UFMG ( site - http://www.ead.eee.ufmg.br/cursos/C/). Esta versão .doc foi elaborada por Henrique José dos Santos (Eng@ da Computação, UNISANTOS, Santos-SP) Este curso foi implementado na UFMG - Universidade Federal de Minas Gerais pelo Núcleo de Ensino à Distância da Escola de Engenharia - fazendo parte de um projeto apoiado pela Pró-Reitoria de Graduação da UFMG, através do programa PROGRAD97/FUNDO-FUNDEP. O curso é oferecido regularmente, a cada semestre, desde 1997. Na nossa página de inscrições você pode verificar o número de participantes em cada edição. Desde sua primeira edição, o curso tem sido oferecido gratuitamente e não oferece certificados de conclusão. Ou seja, você deve fazer este curso se estiver interessado em seu aprimoramento pessoal. Quem originalmente escreveu o curso de C foi o aluno de graduação em Engenharia Elétrica, Daniel Balparda de Carvalho. Algumas modificações foram introduzidas pela aluna de doutorado Ana Liddy Cenni de Castro Magalhães e pelo aluno de graduação em Engenharia Elétrica, Ebenezer Silva Oliveira. Posteriormente, Guilherme Neves Cavalieri, também aluno de graduação em Engenharia Elétrica, modificou as páginas, de forma a facilitar a navegação e utilização do curso. Atualmente ele é mantido pelo professor Renato Cardoso Mesquita. 5 - 5 - Fluxos Padrão ..................................................................................................................................... 100 - fprintf.......................................................................................................................................... 100 - fscanf .......................................................................................................................................... 100 AULA 10 - Tipos de Dados Avançados ........................................................................................................ 101 Modificadores de Acesso.................................................................................................................... 101 - const............................................................................................................................................ 101 - volatile ........................................................................................................................................ 102 - static............................................................................................................................................ 102 - register ........................................................................................................................................ 103 Conversão de Tipos ............................................................................................................................ 104 Modificadores de Funções.................................................................................................................. 105 - pascal .......................................................................................................................................... 105 - cdecl............................................................................................................................................ 105 - interrupt ...................................................................................................................................... 105 Ponteiros para Funções....................................................................................................................... 106 Alocação Dinâmica ............................................................................................................................ 107 - malloc ......................................................................................................................................... 107 - calloc........................................................................................................................................... 109 - realloc ......................................................................................................................................... 110 - free.............................................................................................................................................. 111 Alocação Dinâmica de Vetores e Matrizes......................................................................................... 112 - Alocação Dinâmica de Vetores................................................................................................... 112 - Alocação Dinâmica de Matrizes ................................................................................................. 113 AULA 11 - Tipos de Dados Definidos Pelo Usuário..................................................................................... 115 Estruturas - Primeira parte.................................................................................................................. 115 - Criando ....................................................................................................................................... 115 - Usando........................................................................................................................................ 116 - Matrizes de estruturas ................................................................................................................. 117 Estruturas - Segunda parte.................................................................................................................. 118 - Atribuindo................................................................................................................................... 118 - Passando para funções ................................................................................................................ 120 - Ponteiros ..................................................................................................................................... 120 Declaração Union ............................................................................................................................... 121 Enumerações....................................................................................................................................... 123 O Comando sizeof .............................................................................................................................. 124 - O Comando typedef ......................................................................................................................... 125 Uma aplicação de structs: as listas simplesmente encadeadas............................................................ 126 6 Aula 1 - INTRODUÇÃO Vamos, neste curso, aprender os conceitos básicos da linguagem de programação C a qual tem se tornado cada dia mais popular, devido à sua versatilidade e ao seu poder. Uma das grandes vantagens do C é que ele possui tanto características de "alto nível" quanto de "baixo nível". Apesar de ser bom, não é pré-requisito do curso um conhecimento anterior de linguagens de programação. É importante uma familiaridade com computadores. O que é importante é que você tenha vontade de aprender, dedicação ao curso e, caso esteja em uma das turmas do curso, acompanhe atentamente as discussões que ocorrem na lista de discussões do curso. O C nasceu na década de 70. Seu inventor, Dennis Ritchie, implementou-o pela primeira vez usando um DEC PDP-11 rodando o sistema operacional UNIX. O C é derivado de uma outra linguagem: o B, criado por Ken Thompson. O B, por sua vez, veio da linguagem BCPL, inventada por Martin Richards. O C é uma linguagem de programação genérica que é utilizada para a criação de programas diversos como processadores de texto, planilhas eletrônicas, sistemas operacionais, programas de comunicação, programas para a automação industrial, gerenciadores de bancos de dados, programas de projeto assistido por computador, programas para a solução de problemas da Engenharia, Física, Química e outras Ciências, etc ... É bem provável que o Navegador que você está usando para ler este texto tenha sido escrito em C ou C++. Estudaremos a estrutura do ANSI C, o C padronizado pela ANSI. Veremos ainda algumas funções comuns em compiladores para alguns sistemas operacionais. Quando não houver equivalentes para as funções em outros sistemas, apresentaremos formas alternativas de uso dos comandos. Sugerimos que o aluno realmente use o máximo possível dos exemplos, problemas e exercícios aqui apresentados, gerando os programas executáveis com o seu compilador. Quando utilizamos o compilador aprendemos a lidar com mensagens de aviso, mensagens de erro, bugs, etc. Apenas ler os exemplos não basta. O conhecimento de uma linguagem de programação transcende o conhecimento de estruturas e funções. O C exige, além do domínio da linguagem em si, uma familiaridade com o compilador e experiência em achar "bugs" nos programas. É importante então que o leitor digite, compile e execute os exemplos apresentados. 7 - 7 - AULA 2 - Primeiros Passos O C é "Case Sensitive" Vamos começar o nosso curso ressaltando um ponto de suma importância: o C é "Case Sensitive", isto é, maiúsculas e minúsculas fazem diferença. Se declarar uma variável com o nome soma ela será diferente de Soma, SOMA, SoMa ou sOmA. Da mesma maneira, os comandos do C if e for, por exemplo, só podem ser escritos em minúsculas pois senão o compilador não irá interpretá-los como sendo comandos, mas sim como variáveis. Dois Primeiros Programas Vejamos um primeiro programa em C: #include <stdio.h> /* Um Primeiro Programa */ int main () { printf ("Ola! Eu estou vivo!\n"); return(0); } Compilando e executando este programa você verá que ele coloca a mensagem Ola! Eu estou vivo! na tela. Vamos analisar o programa por partes. A linha #include <stdio.h> diz ao compilador que ele deve incluir o arquivo-cabeçalho stdio.h. Neste arquivo existem declarações de funções úteis para entrada e saída de dados (std = standard, padrão em inglês; io = Input/Output, entrada e saída ==> stdio = Entrada e saída padronizadas). Toda vez que você quiser usar uma destas funções deve-se incluir este comando. O C possui diversos Arquivos-cabeçalho. Quando fazemos um programa, uma boa idéia é usar comentários que ajudem a elucidar o funcionamento do mesmo. No caso acima temos um comentário: /* Um Primeiro Programa */. O compilador C desconsidera qualquer coisa que esteja começando com /* e terminando com */. Um comentário pode, inclusive, ter mais de uma linha. A linha int main() indica que estamos definindo uma função de nome main. Todos os programas em C têm que ter uma função main, pois é esta função que será chamada quando o programa for executado. O conteúdo da função é delimitado por chaves { }. O código que estiver dentro das chaves será 10 - Argumentos Argumentos são as entradas que a função recebe. É através dos argumentos que passamos parâmetros para a função. Já vimos funções com argumentos. As funções printf() e scanf() são funções que recebem argumentos. Vamos ver um outro exemplo simples de função com argumentos: #include <stdio.h> int square (int x) /* Calcula o quadrado de x */ { printf ("O quadrado e %d",(x*x)); return(0); } int main () { int num; printf ("Entre com um numero: "); scanf ("%d",&num); printf ("\n\n"); square(num); return(0); } Na definição de square() dizemos que a função receberá um argumento inteiro x. Quando fazemos a chamada à função, o inteiro num é passado como argumento. Há alguns pontos a observar. Em primeiro lugar temos de satisfazer aos requisitos da função quanto ao tipo e à quantidade de argumentos quando a chamamos. Apesar de existirem algumas conversões de tipo, que o C faz automaticamente, é importante ficar atento. Em segundo lugar, não é importante o nome da variável que se passa como argumento, ou seja, a variável num, ao ser passada como argumento para square() é copiada para a variável x. Dentro de square() trabalha-se apenas com x. Se mudarmos o valor de x dentro de square() o valor de num na função main() permanece inalterado. Vamos dar um exemplo de função de mais de uma variável. Repare que, neste caso, os argumentos são separados por vírgula e que deve-se explicitar o tipo de cada um dos argumentos, um a um. Note, também, que os argumentos passados para a função não necessitam ser todos variáveis porque mesmo sendo constantes serão copiados para a variável de entrada da função. #include <stdio.h> int mult (float a, float b,float c) /* Multiplica 3 numeros */ { printf ("%f",a*b*c); return(0); } int main () { float x,y; 11 - 11 - x=23.5; y=12.9; mult (x,y,3.87); return(0); } - Retornando valores Muitas vezes é necessário fazer com que uma função retorne um valor. As funções que vimos até aqui estavam retornando o número 0. Podemos especificar um tipo de retorno indicando-o antes do nome da função. Mas para dizer ao C o que vamos retornar precisamos da palavra reservada return. Sabendo disto fica fácil fazer uma função para multiplicar dois inteiros e que retorna o resultado da multiplicação. Veja: #include <stdio.h> int prod (int x,int y) { return (x*y); } int main () { int saida; saida=prod (12,7); printf ("A saida e: %d\n",saida); return(0); } Veja que, como prod retorna o valor de 12 multiplicado por 7, este valor pode ser usado em uma expressão qualquer. No programa fizemos a atribuição deste resultado à variável saida, que posteriormente foi impressa usando o printf. Uma observação adicional: se não especificarmos o tipo de retorno de uma função, o compilador C automaticamente suporá que este tipo é inteiro. Porém, não é uma boa prática não se especificar o valor de retorno e, neste curso, este valor será sempre especificado. Com relação à função main, o retorno sempre será inteiro. Normalmente faremos a função main retornar um zero quando ela é executada sem qualquer tipo de erro. Mais um exemplo de função, que agora recebe dois floats e também retorna um float:: #include <stdio.h> float prod (float x,float y) { return (x*y); } int main () { 12 float saida; saida=prod (45.2,0.0067); printf ("A saida e: %f\n",saida); return(0); } - Forma geral Apresentamos aqui a forma geral de uma função: tipo_de_retorno nome_da_função (lista_de_argumentos) { código_da_função } AUTO AVALIAÇÃO Veja como você está. Escreva uma função que some dois inteiros e retorne o valor da soma. Introdução Básica às Entradas e Saídas - Caracteres Os caracteres são um tipo de dado: o char. O C trata os caracteres ('a', 'b', 'x', etc ...) como sendo variáveis de um byte (8 bits). Um bit é a menor unidade de armazenamento de informações em um computador. Os inteiros (ints) têm um número maior de bytes. Dependendo da implementação do compilador, eles podem ter 2 bytes (16 bits) ou 4 bytes (32 bits). Isto será melhor explicado na aula 3. Na linguagem C, também podemos usar um char para armazenar valores numéricos inteiros, além de usá-lo para armazenar caracteres de texto. Para indicar um caractere de texto usamos apóstrofes. Veja um exemplo de programa que usa caracteres: #include <stdio.h> int main () { char Ch; Ch='D'; printf ("%c",Ch); return(0); } No programa acima, %c indica que printf() deve colocar um caractere na tela. Como vimos anteriormente, um char também é usado para armazenar um número inteiro. Este número é conhecido como o código ASCII correspondente ao caractere. Veja o programa abaixo: #include <stdio.h> int main () { char Ch; 15 - 15 - #include <stdio.h> int main() { char str[10] = "Joao"; printf("\n\nString: %s", str); printf("\nSegunda letra: %c", str[1]); str[1] = 'U'; printf("\nAgora a segunda letra eh: %c", str[1]); printf("\n\nString resultante: %s", str); return(0); } Nesta string, o terminador nulo está na posição 4. Das posições 0 a 4, sabemos que temos caracteres válidos, e portanto podemos escrevê-los. Note a forma como inicializamos a string str com os caracteres 'J' 'o' 'a' 'o' e '\0' simplesmente declarando char str[10] = "Joao". Veremos, posteriormente que "Joao" (uma cadeia de caracteres entre aspas) é o que chamamos de string constante, isto é, uma cadeia de caracteres que está pré-carregada com valores que não podem ser modificados. Já a string str é uma string variável, pois podemos modificar o que nela está armazenado, como de fato fizemos. No programa acima, %s indica que printf() deve colocar uma string na tela. Vamos agora fazer uma abordagem inicial às duas funções que já temos usado para fazer a entrada e saída. - printf A função printf() tem a seguinte forma geral: printf (string_de_controle,lista_de_argumentos); Teremos, na string de controle, uma descrição de tudo que a função vai colocar na tela. A string de controle mostra não apenas os caracteres que devem ser colocados na tela, mas também quais as variáveis e suas respectivas posições. Isto é feito usando-se os códigos de controle, que usam a notação %. Na string de controle indicamos quais, de qual tipo e em que posição estão as variáveis a serem apresentadas. É muito importante que, para cada código de controle, tenhamos um argumento na lista de argumentos. Apresentamos agora alguns dos códigos %: Código Significado %d Inteiro %f Float %c Caractere %s String 16 %% Coloca na tela um % Vamos ver alguns exemplos de printf() e o que eles exibem: printf ("Teste %% %%") -> "Teste % %" printf ("%f",40.345) -> "40.345" printf ("Um caractere %c e um inteiro %d",'D',120) -> "Um caractere D e um inteiro 120" printf ("%s e um exemplo","Este") -> "Este e um exemplo" printf ("%s%d%%","Juros de ",10) -> "Juros de 10%" Maiores detalhes sobre a função printf() (incluindo outros códigos de controle) serão vistos posteriormente, mas podem ser consultados de antemão pelos interessados. - scanf O formato geral da função scanf() é: scanf (string-de-controle,lista-de-argumentos); Usando a função scanf() podemos pedir dados ao usuário. Um exemplo de uso, pode ser visto acima. Mais uma vez, devemos ficar atentos a fim de colocar o mesmo número de argumentos que o de códigos de controle na string de controle. Outra coisa importante é lembrarmos de colocar o & antes das variáveis da lista de argumentos. É impossível justificar isto agora, mas veremos depois a razão para este procedimento. Maiores detalhes sobre a função scanf() serão vistos posteriormente, mas podem ser consultados de antemão pelos interessados. AUTO AVALIAÇÃO Veja como você está: a) Escreva um programa que leia um caracter digitado pelo usuário, imprima o caracter digitado e o código ASCII correspondente a este caracter. b) Escreva um programa que leia duas strings e as coloque na tela. Imprima também a segunda letra de cada string. Introdução a Alguns Comandos de Controle de Fluxo Os comandos de controle de fluxo são aqueles que permitem ao programador alterar a sequência de execução do programa. Vamos dar uma breve introdução a dois comandos de controle de fluxo. Outros comandos serão estudados posteriormente. - if 17 - 17 - O comando if representa uma tomada de decisão do tipo "SE isto ENTÃO aquilo". A sua forma geral é: if (condição) declaração; A condição do comando if é uma expressão que será avaliada. Se o resultado for zero a declaração não será executada. Se o resultado for qualquer coisa diferente de zero a declaração será executada. A declaração pode ser um bloco de código ou apenas um comando. É interessante notar que, no caso da declaração ser um bloco de código, não é necessário (e nem permitido) o uso do ; no final do bloco. Isto é uma regra geral para blocos de código. Abaixo apresentamos um exemplo: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num>10) printf ("\n\nO numero e maior que 10"); if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10."); } if (num<10) printf ("\n\nO numero e menor que 10"); return (0); } No programa acima a expressão num>10 é avaliada e retorna um valor diferente de zero, se verdadeira, e zero, se falsa. No exemplo, se num for maior que 10, será impressa a frase: "O número e maior que 10". Repare que, se o número for igual a 10, estamos executando dois comandos. Para que isto fosse possível, tivemos que agrupa-los em um bloco que se inicia logo após a comparação e termina após o segundo printf. Repare também que quando queremos testar igualdades usamos o operador == e não =. Isto porque o operador = representa apenas uma atribuição. Pode parecer estranho à primeira vista, mas se escrevêssemos if (num=10) ... /* Isto esta errado */ o compilador iria atribuir o valor 10 à variável num e a expressão num=10 iria retornar 10, fazendo com que o nosso valor de num fosse modificado e fazendo com que a declaração fosse executada sempre. Este problema gera erros frequentes entre iniciantes e, portanto, muita atenção deve ser tomada. Os operadores de comparação são: == (igual), != (diferente de), > (maior que), < (menor que), >= (maior ou igual), <= (menor ou igual). - for O loop (laço) for é usado para repetir um comando, ou bloco de comandos, diversas vezes, de maneira que se possa ter um bom controle sobre o loop. Sua forma geral é: 20 originais, isto é, não podemos declarar funções ou variáveis com os mesmos nomes. Como o C é "case sensitive" podemos declarar uma variável For, apesar de haver uma palavra reservada for, mas isto não é uma coisa recomendável de se fazer pois pode gerar confusão. Apresentamos a seguir as palavras reservadas do ANSI C. Veremos o significado destas palavras chave à medida em que o curso for progredindo: auto break case char const continue default do double else enum extern float for goto if int long register return short signed sizeof static struct switch typedef union unsigned void volatile while AULA 3 - VARIÁVEIS, CONSTANTES, OPERADORES E EXPRESSÕES Nomes de Variáveis As variáveis no C podem ter qualquer nome se duas condições forem satisfeitas: o nome deve começar com uma letra ou sublinhado (_) e os caracteres subsequentes devem ser letras, números ou sublinhado (_). Há apenas mais duas restrições: o nome de uma variável não pode ser igual a uma palavra reservada, nem igual ao nome de uma função declarada pelo programador, ou pelas bibliotecas do C. Variáveis de até 32 caracteres são aceitas. Mais uma coisa: é bom sempre lembrar que o C é "case sensitive" e portanto deve-se prestar atenção às maiúsculas e minúsculas. Dicas quanto aos nomes de variáveis... • É uma prática tradicional do C, usar letras minúsculas para nomes de variáveis e maiúsculas para nomes de constantes. Isto facilita na hora da leitura do código; • Quando se escreve código usando nomes de variáveis em português, evita-se possíveis conflitos com nomes de rotinas encontrados nas diversas bibliotecas, que são em sua maioria absoluta, palavras em inglês. Os Tipos do C O C tem 5 tipos básicos: char, int, float, void, double. Destes não vimos ainda os dois últimos: O double é o ponto flutuante duplo e pode ser visto como um ponto flutuante com muito mais precisão. O void é o tipo vazio, ou um "tipo sem tipo". A aplicação deste "tipo" será vista posteriormente. 21 - 21 - Para cada um dos tipos de variáveis existem os modificadores de tipo. Os modificadores de tipo do C são quatro: signed, unsigned, long e short. Ao float não se pode aplicar nenhum e ao double pode-se aplicar apenas o long. Os quatro modificadores podem ser aplicados a inteiros. A intenção é que short e long devam prover tamanhos diferentes de inteiros onde isto for prático. Inteiros menores (short) ou maiores (long). int normalmente terá o tamanho natural para uma determinada máquina. Assim, numa máquina de 16 bits, int provavelmente terá 16 bits. Numa máquina de 32, int deverá ter 32 bits. Na verdade, cada compilador é livre para escolher tamanhos adequados para o seu próprio hardware, com a única restrição de que shorts ints e ints devem ocupar pelo menos 16 bits, longs ints pelo menos 32 bits, e short int não pode ser maior que int, que não pode ser maior que long int. O modificador unsigned serve para especificar variáveis sem sinal. Um unsigned int será um inteiro que assumirá apenas valores positivos. A seguir estão listados os tipos de dados permitidos e seu valores máximos e mínimos em um compilador típico para um hardware de 16 bits. Também nesta tabela está especificado o formato que deve ser utilizado para ler os tipos de dados com a função scanf(): Intervalo Tipo Num de bits Formato para leitura f Inicio Fim char 8 %c -128 127 unsigned char 8 %c 0 255 signed char 8 %c -128 127 int 16 %i -32.768 32.767 unsigned int 16 %u 0 65.535 signed int 16 %i -32.768 32.767 short int 16 %hi -32.768 32.767 unsigned short int 16 %hu 0 65.535 signed short int 16 %hi -32.768 32.767 long int 32 %li -2.147.483.648 2.147.483.647 signed long int 32 %li -2.147.483.648 2.147.483.647 unsigned long int 32 %lu 0 4.294.967.295 float 32 %f 3,4E-38 3.4E+38 double 64 %lf 1,7E-308 1,7E+308 long double 80 %Lf 3,4E-4932 3,4E+4932 O tipo long double é o tipo de ponto flutuante com maior precisão. É importante observar que os intervalos de ponto flutuante, na tabela acima, estão indicados em faixa de expoente, mas os números podem assumir valores tanto positivos quanto negativos. Declaração e Inicialização de Variáveis As variáveis no C devem ser declaradas antes de serem usadas. A forma geral da declaração de variáveis é: tipo_da_variável lista_de_variáveis; As variáveis da lista de variáveis terão todas o mesmo tipo e deverão ser separadas por vírgula. Como o tipo default do C é o int, quando vamos declarar 22 variáveis int com algum dos modificadores de tipo, basta colocar o nome do modificador de tipo. Assim um long basta para declarar um long int. Por exemplo, as declarações char ch, letra; long count; float pi; declaram duas variáveis do tipo char (ch e letra), uma variavel long int (count) e um float pi. Há três lugares nos quais podemos declarar variáveis. O primeiro é fora de todas as funções do programa. Estas variáveis são chamadas variáveis globais e podem ser usadas a partir de qualquer lugar no programa. Pode-se dizer que, como elas estão fora de todas as funções, todas as funções as vêem. O segundo lugar no qual se pode declarar variáveis é no início de um bloco de código. Estas variáveis são chamadas locais e só têm validade dentro do bloco no qual são declaradas, isto é, só a função à qual ela pertence sabe da existência desta variável, dentro do bloco no qual foram declaradas. O terceiro lugar onde se pode declarar variáveis é na lista de parâmetros de uma função. Mais uma vez, apesar de estas variáveis receberem valores externos, estas variáveis são conhecidas apenas pela função onde são declaradas. Veja o programa abaixo: #include <stdio.h> int contador; int func1(int j) { /* aqui viria o código da funcao ... */ } int main() { char condicao; int i; for (i=0; i<100; i=i+1) { /* Bloco do for */ float f2; /* etc ... ... */ func1(i); } /* etc ... */ return(0); } A variável contador é uma variável global, e é acessível de qualquer parte do programa. As variáveis condição e i, só existem dentro de main(), isto é são variáveis locais de main. A variável float f2 é um exemplo de uma variável de bloco, isto é, ela somente é conhecida dentro do bloco do for, pertencente à 25 - 25 - Código Significado \b Retrocesso ("back") \f Alimentação de formulário ("form feed") \n Nova linha ("new line") \t Tabulação horizontal ("tab") \" Aspas \' Apóstrofo \0 Nulo (0 em decimal) \\ Barra invertida \v Tabulação vertical \a Sinal sonoro ("beep") \N Constante octal (N é o valor da constante) \xN Constante hexadecimal (N é o valor da constante) Operadores Aritméticos e de Atribuição Os operadores aritméticos são usados para desenvolver operações matemáticas. A seguir apresentamos a lista dos operadores aritméticos do C: Operador Ação + Soma (inteira e ponto flutuante) - Subtração ou Troca de sinal (inteira e ponto flutuante) * Multiplicação (inteira e ponto flutuante) / Divisão (inteira e ponto flutuante) % Resto de divisão (de inteiros) ++ Incremento (inteiro e ponto flutuante) -- Decremento (inteiro e ponto flutuante) O C possui operadores unários e binários. Os unários agem sobre uma variável apenas, modificando ou não o seu valor, e retornam o valor final da variável. Os binários usam duas variáveis e retornam um terceiro valor, sem alterar as variáveis originais. A soma é um operador binário pois pega duas variáveis, soma seus valores, sem alterar as variáveis, e retorna esta soma. Outros operadores binários são os operadores - (subtração), *, / e %. O operador - como troca de sinal é um operador unário que não altera a variável sobre a qual é aplicado, pois ele retorna o valor da variável multiplicado por -1. O operador / (divisão) quando aplicado a variáveis inteiras, nos fornece o resultado da divisão inteira; quando aplicado a variáveis em ponto flutuante nos fornece o resultado da divisão "real". O operador % fornece o resto da divisão de dois inteiros. Assim seja o seguinte trecho de código: int a = 17, b = 3; int x, y; 26 float z = 17. , z1, z2; x = a / b; y = a % b; z1 = z / b; z2 = a/b; ao final da execução destas linhas, os valores calculados seriam x = 5, y = 2, z1 = 5.666666 e z2 = 5.0 . Note que, na linha correspondente a z2, primeiramente é feita uma divisão inteira (pois os dois operandos são inteiros). Somente após efetuada a divisão é que o resultado é atribuído a uma variável float. Os operadores de incremento e decremento são unários que alteram a variável sobre a qual estão aplicados. O que eles fazem é incrementar ou decrementar, a variável sobre a qual estão aplicados, de 1. Então x++; x--; são equivalentes a x=x+1; x=x-1; Estes operadores podem ser pré-fixados ou pós- fixados. A diferença é que quando são pré-fixados eles incrementam e retornam o valor da variável já incrementada. Quando são pós-fixados eles retornam o valor da variável sem o incremento e depois incrementam a variável. Então, em x=23; y=x++; teremos, no final, y=23 e x=24. Em x=23; y=++x; teremos, no final, y=24 e x=24. Uma curiosidade: a linguagem de programação C++ tem este nome pois ela seria um "incremento" da linguagem C padrão. A linguagem C++ é igual à linguagem C só que com extensões que permitem a programação orientada a objeto, o que é um recurso extra. O operador de atribuição do C é o =. O que ele faz é pegar o valor à direita e atribuir à variável da esquerda. Além disto ele retorna o valor que ele atribuiu. Isto faz com que as seguintes expressões sejam válidas: x=y=z=1.5; /* Expressao 1 */ if (k=w) ... /* Expressão 2 */ A expressão 1 é válida, pois quando fazemos z=1.5 ela retorna 1.5, que é passado adiante, fazendo y = 1.5 e posteriormente x = 1.5. A expressão 2 será verdadeira se w for diferente de zero, pois este será o valor retornado por k=w. Pense bem antes de usar a expressão dois, pois ela pode gerar erros de interpretação. Você não está comparando k e w. Você está atribuindo o valor de w a k e usando este valor para tomar a decisão. AUTO AVALIAÇÃO Veja como você está: 27 - 27 - Diga o resultado das variáveis x, y e z depois da seguinte seqüência de operações: int x,y,z; x=y=10; z=++x; x=-x; y++; x=x+y-(z--); Operadores Relacionais e Lógicos Os operadores relacionais do C realizam comparações entre variáveis. São eles: Operador Ação > Maior do que >= Maior ou igual a < Menor do que <= Menor ou igual a == Igual a != Diferente de Os operadores relacionais retornam verdadeiro (1) ou falso (0). Para verificar o funcionamento dos operadores relacionais, execute o programa abaixo: /* Este programa ilustra o funcionamento dos operadores relacionais. */ #include <stdio.h> int main() { int i, j; printf("\nEntre com dois números inteiros: "); scanf("%d%d", &i, &j); printf("\n%d == %d é %d\n", i, j, i==j); printf("\n%d != %d é %d\n", i, j, i!=j); printf("\n%d <= %d é %d\n", i, j, i<=j); printf("\n%d >= %d é %d\n", i, j, i>=j); printf("\n%d < %d é %d\n", i, j, i<j); printf("\n%d > %d é %d\n", i, j, i>j); return(0); } Você pode notar que o resultado dos operadores relacionais é sempre igual a 0 (falso) ou 1 (verdadeiro). Para fazer operações com valores lógicos (verdadeiro e falso) temos os operadores lógicos: Operador Ação && AND (E) 30 Anos=Dias/365.25; i = i+3; c= a*b + d/e; c= a*(b+d)/e; - Conversão de tipos em expressões Quando o C avalia expressões onde temos variáveis de tipos diferentes o compilador verifica se as conversões são possíveis. Se não são, ele não compilará o programa, dando uma mensagem de erro. Se as conversões forem possíveis ele as faz, seguindo as regras abaixo: 1. Todos os chars e short ints são convertidos para ints. Todos os floats são convertidos para doubles. 2. Para pares de operandos de tipos diferentes: se um deles é long double o outro é convertido para long double; se um deles é double o outro é convertido para double; se um é long o outro é convertido para long; se um é unsigned o outro é convertido para unsigned. - Expressões que Podem ser Abreviadas O C admite as seguintes equivalências, que podem ser usadas para simplificar expressões ou para facilitar o entendimento de um programa: Expressão Original Expressão Equivalente x=x+k; x+=k; x=x-k; x-=k; x=x*k; x*=k; x=x/k; x/=k; x=x>>k; x>>=k; x=x<<k; x<<=k; x=x&k; x&=k; etc... - Encadeando expressões: o operador , O operador , determina uma lista de expressões que devem ser executadas seqüencialmente. Em síntese, a vírgula diz ao compilador: execute as duas expressões separadas pela vírgula, em seqüência. O valor retornado por uma expressão com o operador , é sempre dado pela expressão mais à direita. No exemplo abaixo: x=(y=2,y+3); o valor 2 vai ser atribuído a y, se somará 3 a y e o retorno (5) será atribuído à variável x . Pode-se encadear quantos operadores , forem necessários. O exemplo a seguir mostra um outro uso para o operador , dentro de um for: #include<stdio.h> int main() { 31 - 31 - int x, y; for(x=0 , y=0 ; x+y < 100 ; ++x , y++) /* Duas variáveis de controle: x e y . Foi atribuído o valor zero a cada uma delas na inicialização do for e ambas são incrementadas na parte de incremento do for */ printf("\n%d ", x+y); /* o programa imprimirá os números pares de 2 a 98 */ } - Tabela de Precedências do C Esta é a tabela de precedência dos operadores em C. Alguns (poucos) operadores ainda não foram estudados, e serão apresentados em aulas posteriores. Maior precedência () [] -> ! ~ ++ -- . -(unário) (cast) *(unário) &(unário) sizeof * / % + - << >> <<= >>= == != & ^ | && || ? = += -= *= /= Menor precedência , Uma dica aos iniciantes: Você não precisa saber toda a tabela de precedências de cor. É útil que você conheça as principais relações, mas é aconselhável que ao escrever o seu código, você tente isolar as expressões com parênteses, para tornar o seu programa mais legível. Modeladores (Casts) Um modelador é aplicado a uma expressão. Ele força a mesma a ser de um tipo especificado. Sua forma geral é: (tipo)expressão Um exemplo: #include <stdio.h> int main () { int num; 32 float f; num=10; f=(float)num/7; /* Uso do modelador . Força a transformação de num em um float */ printf ("%f",f); return(0); } Se não tivéssemos usado o modelador no exemplo acima o C faria uma divisão inteira entre 10 e 7. O resultado seria 1 (um) e este seria depois convertido para float mas continuaria a ser 1.0. Com o modelador temos o resultado correto. AUTO AVALIAÇÃO Veja como você está: Compile o exemplo acima sem usar o modelador, e verifique os resultados. Compile-o novamente usando o modelador e compare a saída com os resultados anteriores. Aula 4 - ESTRUTURAS DE CONTROLE DE FLUXO As estruturas de controle de fluxo são fundamentais para qualquer linguagem de programação. Sem elas só haveria uma maneira do programa ser executado: de cima para baixo comando por comando. Não haveria condições, repetições ou saltos. A linguagem C possui diversos comandos de controle de fluxo. É possível resolver todos os problemas sem utilizar todas elas, mas devemos nos lembrar que a elegância e facilidade de entendimento de um programa dependem do uso correto das estruturas no local certo. 35 - 35 - else if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10."); } else if (num<10) printf ("\n\nO numero e menor que 10"); return(0); } - A expressão condicional Quando o compilador avalia uma condição, ele quer um valor de retorno para poder tomar a decisão. Mas esta expressão não necessita ser uma expressão no sentido convencional. Uma variável sozinha pode ser uma "expressão" e esta retorna o seu próprio valor. Isto quer dizer que teremos as seguintes expressões: int num; if (num!=0) .... if (num==0) .... for (i = 0; string[i] != '\0'; i++) equivalem a int num; if (num) .... if (!num) .... for (i = 0; string[i]; i++) Isto quer dizer que podemos simplificar algumas expressões simples. - ifs aninhados O if aninhado é simplesmente um if dentro da declaração de um outro if externo. O único cuidado que devemos ter é o de saber exatamente a qual if um determinado else está ligado. Vejamos um exemplo: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num==10) { 36 printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10.\n"); } else { if (num>10) { printf ("O numero e maior que 10."); } else { printf ("O numero e menor que 10."); } } return(0); } - O Operador ? Uma expressão como: if (a>0) b=-150; else b=150; pode ser simplificada usando-se o operador ? da seguinte maneira: b=a>0?-150:150; De uma maneira geral expressões do tipo: if (condição) expressão_1; else expressão_2; podem ser substituídas por: condição?expressão_1:expressão_2; O operador ? é limitado (não atende a uma gama muito grande de casos) mas pode ser usado para simplificar expressões complicadas. Uma aplicação interessante é a do contador circular. Veja o exemplo: #include <stdio.h> int main() { int index = 0, contador; char letras[5] = "Joao"; for (contador=0; contador < 1000; contador++) { printf("\n%c",letras[index]); 37 - 37 - (index==3) ? index=0: ++index; } } O nome Joao é escrito na tela verticalmente até a variável contador determinar o término do programa. Enquanto isto a variável index assume os valores 0, 1, 2, 3, , 0, 1, ... progressivamente. AUTO-AVALIAÇÃO Veja como você está: Altere o último exemplo para que ele escreva cada letra 5 vezes seguidas. Para isto, use um 'if' para testar se o contador é divisível por cinco (utilize o operador %) e só então realizar a atualização em index. O Comando switch O comando if-else e o comando switch são os dois comandos de tomada de decisão. Sem dúvida alguma o mais importante dos dois é o if, mas o comando switch tem aplicações valiosas. Mais uma vez vale lembrar que devemos usar o comando certo no local certo. Isto assegura um código limpo e de fácil entendimento. O comando switch é próprio para se testar uma variável em relação a diversos valores pré-estabelecidos. Sua forma geral é: switch (variável) { case constante_1: declaração_1; break; case constante_2: declaração_2; break; . . . case constante_n: declaração_n; break; default declaração_default; } Podemos fazer uma analogia entre o switch e a estrutura if-else-if apresentada anteriormente. A diferença fundamental é que a estrutura switch não aceita expressões. Aceita apenas constantes. O switch testa a variável e executa a declaração cujo case corresponda ao valor atual da variável. A declaração default é opcional e será executada apenas se a variável, que está sendo testada, não for igual a nenhuma das constantes. O comando break, faz com que o switch seja interrompido assim que uma das declarações seja executada. Mas ele não é essencial ao comando switch. Se 40 Este loop chama-se loop infinito porque será executado para sempre (não existindo a condição, ela será sempre considerada verdadeira), a não ser que ele seja interrompido. Para interromper um loop como este usamos o comando break. O comando break vai quebrar o loop infinito e o programa continuará sua execução normalmente. Como exemplo vamos ver um programa que faz a leitura de uma tecla e sua impressão na tela, até que o usuario aperte uma tecla sinalizadora de final (um FLAG). O nosso FLAG será a letra 'X'. Repare que tivemos que usar dois scanf() dentro do for. Um busca o caractere que foi digitado e o outro busca o outro caracter digitado na seqüência, que é o caractere correspondente ao <ENTER>. #include <stdio.h> int main () { int Count; char ch; printf(" Digite uma letra - <X para sair> "); for (Count=1;;Count++) { scanf("%c", &ch); if (ch == 'X') break; printf("\nLetra: %c \n",ch); scanf("%c", &ch); } return(0); } - O loop sem conteúdo Loop sem conteúdo é aquele no qual se omite a declaração. Sua forma geral é (atenção ao ponto e vírgula!): for (inicialização;condição;incremento); Uma das aplicações desta estrutura é gerar tempos de espera. O programa #include <stdio.h> int main () { long int i; printf("\a"); /* Imprime o caracter de alerta (um beep) */ 41 - 41 - for (i=0; i<10000000; i++); /* Espera 10.000.000 de iteracoes */ printf("\a"); /* Imprime outro caracter de alerta */ return(0); } faz isto. AUTO AVALIAÇÃO Veja como você está. Faça um programa que inverta uma string: leia a string com gets e armazene-a invertida em outra string. Use o comando for para varrer a string até o seu final. O Comando while O comando while tem a seguinte forma geral: while (condição) declaração; Assim como fizemos para o comando for, vamos tentar mostrar como o while funciona fazendo uma analogia. Então o while seria equivalente a: if (condição) { declaração; "Volte para o comando if" } Podemos ver que a estrutura while testa uma condição. Se esta for verdadeira a declaração é executada e faz-se o teste novamente, e assim por diante. Assim como no caso do for, podemos fazer um loop infinito. Para tanto basta colocar uma expressão eternamente verdadeira na condição. Pode-se também omitir a declaração e fazer um loop sem conteúdo. Vamos ver um exemplo do uso do while. O programa abaixo é executado enquanto i for menor que 100. Veja que ele seria implementado mais naturalmente com um for ... #include <stdio.h> int main () { int i = 0; while ( i < 100) { printf(" %d", i); i++; } 42 return(0); } O programa abaixo espera o usuário digitar a tecla 'q' e só depois finaliza: #include <stdio.h> int main () { char Ch; Ch='\0'; while (Ch!='q') { scanf("%c", &Ch); } return(0); } AUTO AVALIAÇÃO Veja como você está: Refaça o programa da página anterior. Use o comando while para fechar o loop. O Comando do-while A terceira estrutura de repetição que veremos é o do-while de forma geral: do { declaração; } while (condição); Mesmo que a declaração seja apenas um comando é uma boa prática deixar as chaves. O ponto-e- vírgula final é obrigatório. Vamos, como anteriormente, ver o funcionamento da estrutura do-while "por dentro": declaração; if (condição) "Volta para a declaração" Vemos pela análise do bloco acima que a estrutura do-while executa a declaração, testa a condição e, se esta for verdadeira, volta para a declaração. A grande novidade no comando do-while é que ele, ao contrário do for e do while, garante que a declaração será executada pelo menos uma vez. Um dos usos da extrutura do-while é em menus, nos quais você quer garantir que o valor digitado pelo usuário seja válido, conforme apresentado abaixo: #include <stdio.h> int main () { int i; do 45 - 45 - O Comando goto Vamos mencionar o goto apenas para que você saiba que ele existe. O goto é o último comando de controle de fluxo. Ele pertence a uma classe à parte: a dos comandos de salto incondicional. O goto realiza um salto para um local especificado. Este local é determinado por um rótulo. Um rótulo, na linguagem C, é uma marca no programa. Você dá o nome que quiser a esta marca. Podemos tentar escrever uma forma geral: nome_do_rótulo: .... goto nome_do_rótulo; .... Devemos declarar o nome do rótulo na posição para a qual vamos dar o salto seguido de :. O goto pode saltar para um rótulo que esteja mais à frente ou para trás no programa. Uma observação importante é que o rótulo e o goto devem estar dentro da mesma função. Como exemplo do uso do goto vamos reescrever o equivalente ao comando for apresentado na seção equivalente ao mesmo: inicialização; início_do_loop: if (condição) { declaração; incremento; goto início_do_loop; } O comando goto deve ser utilizado com parcimônia, pois o abuso no seu uso tende a tornar o código confuso. O goto não é um comando necessário, podendo sempre ser substituído por outras estruturas de controle. Recomendamos que o goto nunca seja usado. Existem algumas situações muito específicas onde o comando goto pode tornar um código mais fácil de se entender se ele for bem empregado. Um caso em que ele pode ser útil é quando temos vários loops e ifs aninhados e se queira, por algum motivo, sair destes loops e ifs todos de uma vez. Neste caso um goto resolve o problema mais elegantemente que vários breaks, sem contar que os breaks exigiriam muito mais testes. Ou seja, neste caso o goto é mais elegante e mais rápido. O exemplo da página anterior pode ser reescrito usando-se o goto: #include <stdio.h> int main() { int opcao; 46 while (opcao != 5) { REFAZ: printf("\n\n Escolha uma opcao entre 1 e 5: "); scanf("%d", &opcao); if ((opcao > 5)||(opcao <1)) goto REFAZ; /* Opcao invalida: volta ao rotulo REFAZ */ switch (opcao) { case 1: printf("\n --> Primeira opcao.."); break; case 2: printf("\n --> Segunda opcao.."); break; case 3: printf("\n --> Terceira opcao.."); break; case 4: printf("\n --> Quarta opcao.."); break; case 5: printf("\n --> Abandonando.."); break; } } return(0); } AUTO AVALIAÇÃO Escreva um programa que peça três inteiros, correspondentes a dia , mês e ano. Peça os números até conseguir valores que estejam na faixa correta (dias entre 1 e 31, mês entre 1 e 12 e ano entre 1900 e 2100). Verifique se o mês e o número de dias batem (incluindo verificação de anos bissextos). Se estiver tudo certo imprima o número que aquele dia corresponde no ano. Comente seu programa. PS: Um ano é bissexto se for divisível por 4 e não for divisível por 100, exceto para os anos divisíveis por 400, que também são bissextos. AULA 5 - MATRIZES E STRINGS Vetores 47 - 47 - Vetores nada mais são que matrizes unidimensionais. Vetores são uma estrutura de dados muito utilizada. É importante notar que vetores, matrizes bidimensionais e matrizes de qualquer dimensão são caracterizadas por terem todos os elementos pertencentes ao mesmo tipo de dado. Para se declarar um vetor podemos utilizar a seguinte forma geral: tipo_da_variável nome_da_variável [tamanho]; Quando o C vê uma declaração como esta ele reserva um espaço na memória suficientemente grande para armazenar o número de células especificadas em tamanho. Por exemplo, se declararmos: float exemplo [20]; o C irá reservar 4x20=80 bytes. Estes bytes são reservados de maneira contígua. Na linguagem C a numeração começa sempre em zero. Isto significa que, no exemplo acima, os dados serão indexados de 0 a 19. Para acessá-los vamos escrever: exemplo[0] exemplo[1] . . . exemplo[19] Mas ninguém o impede de escrever: exemplo[30] exemplo[103] Por quê? Porque o C não verifica se o índice que você usou está dentro dos limites válidos. Este é um cuidado que você deve tomar. Se o programador não tiver atenção com os limites de validade para os índices ele corre o risco de ter variáveis sobreescritas ou de ver o computador travar. Bugs terríveis podem surgir. Vamos ver agora um exemplo de utilização de vetores: #include <stdio.h> int main () { int num[100]; /* Declara um vetor de inteiros de 100 posicoes */ int count=0; int totalnums; do { printf ("\nEntre com um numero (-999 p/ terminar): "); scanf ("%d",&num[count]); count++; } while (num[count-1]!=-999); totalnums=count-1; printf ("\n\n\n\t Os números que você digitou foram:\n\n"); for (count=0;count<totalnums;count++) printf (" %d",num[count]); return(0); } No exemplo acima, o inteiro count é inicializado em 0. O programa pede pela entrada de números até que o usuário entre com o Flag -999. Os números são armazenados no vetor num. A cada número armazenado, o contador do vetor 50 #include <string.h> int main () { char str1[100],str2[100],str3[100]; printf ("Entre com uma string: "); gets (str1); strcpy (str2,str1); /* Copia str1 em str2 */ strcpy (str3,"Voce digitou a string "); /* Copia "Voce digitou a string" em str3 */ printf ("\n\n%s%s",str3,str2); return(0); } - strcat A função strcat() tem a seguinte forma geral: strcat (string_destino,string_origem); A string de origem permanecerá inalterada e será anexada ao fim da string de destino. Um exemplo: #include <stdio.h> #include <string.h> int main () { char str1[100],str2[100]; printf ("Entre com uma string: "); gets (str1); strcpy (str2,"Voce digitou a string "); strcat (str2,str1); /* str2 armazenara' Voce digitou a string + o conteudo de str1 */ printf ("\n\n%s",str2); return(0); } - strlen Sua forma geral é: strlen (string); A função strlen() retorna o comprimento da string fornecida. O terminador nulo não é contado. Isto quer dizer que, de fato, o comprimento do vetor da string deve ser um a mais que o inteiro retornado por strlen(). Um exemplo do seu uso: 51 - 51 - #include <stdio.h> #include <string.h> int main () { int size; char str[100]; printf ("Entre com uma string: "); gets (str); size=strlen (str); printf ("\n\nA string que voce digitou tem tamanho %d",size); return(0); } - strcmp Sua forma geral é: strcmp (string1,string2); A função strcmp() compara a string 1 com a string 2. Se as duas forem idênticas a função retorna zero. Se elas forem diferentes a função retorna não- zero. Um exemplo da sua utilização: #include <stdio.h> #include <string.h> int main () { char str1[100],str2[100]; printf ("Entre com uma string: "); gets (str1); printf ("\n\nEntre com outra string: "); gets (str2); if (strcmp(str1,str2)) printf ("\n\nAs duas strings são diferentes."); else printf ("\n\nAs duas strings são iguais."); return(0); } AUTO AVALIAÇÃO Veja como você está. Faça um programa que leia quatro palavras pelo teclado, e armazene cada palavra em uma string. Depois, concatene todas as strings lidas numa única string. Por fim apresente esta como resultado ao final do programa. 52 Matrizes - Matrizes bidimensionais Já vimos como declarar matrizes unidimensionais (vetores). Vamos tratar agora de matrizes bidimensionais. A forma geral da declaração de uma matriz bidimensional é muito parecida com a declaração de um vetor: tipo_da_variável nome_da_variável [altura][largura]; É muito importante ressaltar que, nesta estrutura, o índice da esquerda indexa as linhas e o da direita indexa as colunas. Quando vamos preencher ou ler uma matriz no C o índice mais à direita varia mais rapidamente que o índice à esquerda. Mais uma vez é bom lembrar que, na linguagem C, os índices variam de zero ao valor declarado, menos um; mas o C não vai verificar isto para o usuário. Manter os índices na faixa permitida é tarefa do programador. Abaixo damos um exemplo do uso de uma matriz: #include <stdio.h> int main () { int mtrx [20][10]; int i,j,count; count=1; for (i=0;i<20;i++) for (j=0;j<10;j++) { mtrx[i][j]=count; count++; } return(0); } No exemplo acima, a matriz mtrx é preenchida, sequencialmente por linhas, com os números de 1 a 200. Você deve entender o funcionamento do programa acima antes de prosseguir. - Matrizes de strings Matrizes de strings são matrizes bidimensionais. Imagine uma string. Ela é um vetor. Se fizermos um vetor de strings estaremos fazendo uma lista de vetores. Esta estrutura é uma matriz bidimensional de chars. Podemos ver a forma geral de uma matriz de strings como sendo: char nome_da_variável [num_de_strings][compr_das_strings]; Aí surge a pergunta: como acessar uma string individual? Fácil. É só usar apenas o primeiro índice. Então, para acessar uma determinada string faça: nome_da_variável [índice] 55 - 55 - AULA 6 – PONTEIROS O C é altamente dependente dos ponteiros. Para ser um bom programador em C é fundamental que se tenha um bom domínio deles. Por isto, recomendo ao leitor um carinho especial com esta parte do curso que trata deles. Ponteiros são tão importantes na linguagem C que você já os viu e nem percebeu, pois mesmo para se fazer um introdução básica à linguagem C precisa-se deles. O Ministério da Saúde adverte: o uso descuidado de ponteiros pode levar a sérios bugs e a dores de cabeça terríveis :-). Como Funcionam os Ponteiros Os ints guardam inteiros. Os floats guardam números de ponto flutuante. Os chars guardam caracteres. Ponteiros guardam endereços de memória. Quando você anota o endereço de um colega você está criando um ponteiro. O ponteiro é este seu pedaço de papel. Ele tem anotado um endereço. Qual é o sentido disto? Simples. Quando você anota o endereço de um colega, depois você vai usar este endereço para achá-lo. O C funciona assim. Voce anota o endereço de algo numa variável ponteiro para depois usar. Da mesma maneira, uma agenda, onde são guardados endereços de vários amigos, poderia ser vista como sendo uma matriz de ponteiros no C. Um ponteiro também tem tipo. Veja: quando você anota um endereço de um amigo você o trata diferente de quando você anota o endereço de uma firma. Apesar de o endereço dos dois locais ter o mesmo formato (rua, número, bairro, cidade, etc.) eles indicam locais cujos conteúdos são diferentes. Então os dois endereços são ponteiros de tipos diferentes. No C quando declaramos ponteiros nós informamos ao compilador para que tipo de variável vamos apontá-lo. Um ponteiro int aponta para um inteiro, isto é, guarda o endereço de um inteiro. Declarando e Utilizando Ponteiros Para declarar um ponteiro temos a seguinte forma geral: tipo_do_ponteiro *nome_da_variável; É o asterisco (*) que faz o compilador saber que aquela variável não vai guardar um valor mas sim um endereço para aquele tipo especificado. Vamos ver exemplos de declarações: int *pt; char *temp,*pt2; O primeiro exemplo declara um ponteiro para um inteiro. O segundo declara dois ponteiros para caracteres. Eles ainda não foram inicializados (como toda variável do C que é apenas declarada). Isto significa que eles apontam para um lugar indefinido. Este lugar pode estar, por exemplo, na porção da memória reservada ao sistema operacional do computador. Usar o ponteiro nestas circunstânicias pode levar a um travamento do micro, ou a algo pior. 56 O ponteiro deve ser inicializado (apontado para algum lugar conhecido) antes de ser usado! Isto é de suma importância! Para atribuir um valor a um ponteiro recém-criado poderíamos igualá-lo a um valor de memória. Mas, como saber a posição na memória de uma variável do nosso programa? Seria muito difícil saber o endereço de cada variável que usamos, mesmo porque estes endereços são determinados pelo compilador na hora da compilação e realocados na execução. Podemos então deixar que o compilador faça este trabalho por nós. Para saber o endereço de uma variável basta usar o operador &. Veja o exemplo: int count=10; int *pt; pt=&count; Criamos um inteiro count com o valor 10 e um apontador para um inteiro pt. A expressão &count nos dá o endereço de count, o qual armazenamos em pt. Simples, não é? Repare que não alteramos o valor de count, que continua valendo 10. Como nós colocamos um endereço em pt, ele está agora "liberado" para ser usado. Podemos, por exemplo, alterar o valor de count usando pt. Para tanto vamos usar o operador "inverso" do operador &. É o operador *. No exemplo acima, uma vez que fizemos pt=&count a expressão *pt é equivalente ao próprio count. Isto significa que, se quisermos mudar o valor de count para 12, basta fazer *pt=12. Vamos fazer uma pausa e voltar à nossa analogia para ver o que está acontecendo. Digamos que exista uma firma. Ela é como uma variável que já foi declarada. Você tem um papel em branco onde vai anotar o endereço da firma. O papel é um ponteiro do tipo firma. Você então liga para a firma e pede o seu endereço, o qual você vai anotar no papel. Isto é equivalente, no C, a associar o papel à firma com o operador &. Ou seja, o operador & aplicado à firma é equivalente a você ligar para a mesma e pedir o endereço. Uma vez de posse do endereço no papel você poderia, por exemplo, fazer uma visita à firma. No C você faz uma visita à firma aplicando o operador * ao papel. Uma vez dentro da firma você pode copiar seu conteúdo ou modificá-lo. Uma observação importante: apesar do símbolo ser o mesmo, o operador * (multiplicação) não é o mesmo operador que o * (referência de ponteiros). Para começar o primeiro é binário, e o segundo é unário pré-fixado. 57 - 57 - Aqui vão dois exemplos de usos simples de ponteiros: #include <stdio.h> int main () { int num,valor; int *p; num=55; p=&num; /* Pega o endereco de num */ valor=*p; /* Valor e igualado a num de uma maneira indireta */ printf ("\n\n%d\n",valor); printf ("Endereco para onde o ponteiro aponta: %p\n",p); printf ("Valor da variavel apontada: %d\n",*p); return(0); } #include <stdio.h> int main () { int num,*p; num=55; p=&num; /* Pega o endereco de num */ printf ("\nValor inicial: %d\n",num); *p=100; /* Muda o valor de num de uma maneira indireta */ printf ("\nValor final: %d\n",num); return(0); } Nos exemplos acima vemos um primeiro exemplo do funcionamento dos ponteiros. No primeiro exemplo, o código %p usado na função printf() indica à função que ela deve imprimir um endereço. Podemos fazer algumas operações aritméticas com ponteiros. A primeira, e mais simples, é igualar dois ponteiros. Se temos dois ponteiros p1 e p2 podemos igualá-los fazendo p1=p2. Repare que estamos fazendo com que p1 aponte para o mesmo lugar que p2. Se quisermos que a variável apontada por p1 tenha o mesmo conteúdo da variável apontada por p2 devemos fazer *p1=*p2. Basicamente, depois que se aprende a usar os dois operadores (& e *) fica fácil entender operações com ponteiros. As próximas operações, também muito usadas, são o incremento e o decremento. Quando incrementamos um ponteiro ele passa a apontar para o próximo valor do mesmo tipo para o qual o ponteiro aponta. Isto é, se temos um ponteiro para um inteiro e o incrementamos ele passa a apontar para o próximo inteiro. Esta é mais uma razão pela qual o compilador precisa saber o tipo de um ponteiro: se você incrementa um ponteiro char* ele anda 1 byte na memória e se você incrementa um ponteiro double* ele anda 8 bytes na memória. O decremento funciona semelhantemente. Supondo que p é um ponteiro, as operações são escritas como: 60 Agora podemos entender como é que funciona um vetor! Vamos ver o que podemos tirar de informação deste fato. Fica claro, por exemplo, porque é que, no C, a indexação começa com zero. É porque, ao pegarmos o valor do primeiro elemento de um vetor, queremos, de fato, *nome_da_variável e então devemos ter um índice igual a zero. Então sabemos que: *nome_da_variável é equivalente a nome_da_variável[0] Outra coisa: apesar de, na maioria dos casos, não fazer muito sentido, poderíamos ter índices negativos. Estaríamos pegando posições de memória antes do vetor. Isto explica também porque o C não verifica a validade dos índices. Ele não sabe o tamanho do vetor. Ele apenas aloca a memória, ajusta o ponteiro do nome do vetor para o início do mesmo e, quando você usa os índices, encontra os elementos requisitados. Vamos ver agora um dos usos mais importantes dos ponteiros: a varredura sequencial de uma matriz. Quando temos que varrer todos os elementos de uma matriz de uma forma sequencial, podemos usar um ponteiro, o qual vamos incrementando. Qual a vantagem? Considere o seguinte programa para zerar uma matriz: int main () { float matrx [50][50]; int i,j; for (i=0;i<50;i++) for (j=0;j<50;j++) matrx[i][j]=0.0; return(0); } Podemos reescrevê-lo usando ponteiros: int main () { float matrx [50][50]; float *p; int count; p=matrx[0]; for (count=0;count<2500;count++) { *p=0.0; p++; } return(0); } No primeiro programa, cada vez que se faz matrx[i][j] o programa tem que calcular o deslocamento para dar ao ponteiro. Ou seja, o programa tem que calcular 2500 deslocamentos. No segundo programa o único cálculo que deve ser feito é o de um incremento de ponteiro. Fazer 2500 incrementos em um ponteiro é muito mais rápido que calcular 2500 deslocamentos completos. 61 - 61 - Há uma diferença entre o nome de um vetor e um ponteiro que deve ser frisada: um ponteiro é uma variável, mas o nome de um vetor não é uma variável. Isto significa, que não se consegue alterar o endereço que é apontado pelo "nome do vetor". Seja: int vetor[10]; int *ponteiro, i; ponteiro = &i; /* as operacoes a seguir sao invalidas */ vetor = vetor + 2; /* ERRADO: vetor nao e' variavel */ vetor++; /* ERRADO: vetor nao e' variavel */ vetor = ponteiro; /* ERRADO: vetor nao e' variavel */ Teste as operações acima no seu compilador. Ele dará uma mensagem de erro. Alguns compiladores dirão que vetor não é um Lvalue. Lvalue, significa "Left value", um símbolo que pode ser colocado do lado esquerdo de uma expressão de atribuição, isto é, uma variável. Outros compiladores dirão que tem-se "incompatible types in assignment", tipos incompatíveis em uma atribuição. /* as operacoes abaixo sao validas */ ponteiro = vetor; /* CERTO: ponteiro e' variavel */ ponteiro = vetor+2; /* CERTO: ponteiro e' variavel */ O que você aprendeu nesta seção é de suma importância. Não siga adiante antes de entendê- la bem. - Ponteiros como vetores Sabemos agora que, na verdade, o nome de um vetor é um ponteiro constante. Sabemos também que podemos indexar o nome de um vetor. Como consequência podemos também indexar um ponteiro qualquer. O programa mostrado a seguir funciona perfeitamente: #include <stdio.h> int main () { int matrx [10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int *p; p=matrx; printf ("O terceiro elemento do vetor e: %d",p[2]); return(0); } Podemos ver que p[2] equivale a *(p+2). - Strings Seguindo o raciocínio acima, nomes de strings, são do tipo char*. Isto nos permite escrever a nossa função StrCpy(), que funcionará de forma semelhante à função strcpy() da biblioteca: 62 #include <stdio.h> void StrCpy (char *destino,char *origem) { while (*origem) { *destino=*origem; origem++; destino++; } *destino='\0'; } int main () { char str1[100],str2[100],str3[100]; printf ("Entre com uma string: "); gets (str1); StrCpy (str2,str1); StrCpy (str3,"Voce digitou a string "); printf ("\n\n%s%s",str3,str2); return(0); } Há vários pontos a destacar no programa acima. Observe que podemos passar ponteiros como argumentos de funções. Na verdade é assim que funções como gets() e strcpy() funcionam. Passando o ponteiro você possibilita à função alterar o conteúdo das strings. Você já estava passando os ponteiros e não sabia. No comando while (*origem) estamos usando o fato de que a string termina com '\0' como critério de parada. Quando fazemos origem++ e destino++ o leitor poderia argumentar que estamos alterando o valor do ponteiro-base da string, contradizendo o que recomendei que se deveria fazer, no final de uma seção anterior. O que o leitor talvez não saiba ainda (e que será estudado em detalhe mais adiante) é que, no C, são passados para as funções cópias dos argumentos. Desta maneira, quando alteramos o ponteiro origem na função StrCpy() o ponteiro str2 permanece inalterado na função main(). - Endereços de elementos de vetores Nesta seção vamos apenas ressaltar que a notação &nome_da_variável[índice] é válida e retorna o endereço do ponto do vetor indexado por índice. Isto seria equivalente a nome_da_variável + indice. É interessante notar que, como consequência, o ponteiro nome_da_variável tem o endereço &nome_da_variável[0], que indica onde na memória está guardado o valor do primeiro elemento do vetor. 65 - 65 - Cuidados a Serem Tomados ao se Usar Ponteiros O principal cuidado ao se usar um ponteiro deve ser: saiba sempre para onde o ponteiro está apontando. Isto inclui: nunca use um ponteiro que não foi inicializado. Um pequeno programa que demonstra como não usar um ponteiro: int main () /* Errado - Nao Execute */ { int x,*p; x=13; *p=x; return(0); } Este programa compilará e rodará. O que acontecerá? Ninguém sabe. O ponteiro p pode estar apontando para qualquer lugar. Você estará gravando o número 13 em um lugar desconhecido. Com um número apenas, você provavelmente não vai ver nenhum defeito. Agora, se você começar a gravar números em posições aleatórias no seu computador, não vai demorar muito para travar o micro (se não acontecer coisa pior). AUTO AVALIAÇÃO Veja como você está. Escreva um programa que declare uma matriz 100x100 de inteiros. Você deve inicializar a matriz com zeros usando ponteiros para endereçar seus elementos. Preencha depois a matriz com os números de 1 a 10000, também usando ponteiros. 66 AULA 7 –FUNÇÕES A Função Funções são as estruturas que permitem ao usuário separar seus programas em blocos. Se não as tivéssemos, os programas teriam que ser curtos e de pequena complexidade. Para fazermos programas grandes e complexos temos de construí-los bloco a bloco. Uma função no C tem a seguinte forma geral: tipo_de_retorno nome_da_função (declaração_de_parâmetros) { corpo_da_função } O tipo-de-retorno é o tipo de variável que a função vai retornar. O default é o tipo int, ou seja, uma função para qual não declaramos o tipo de retorno é considerada como retornando um inteiro. A declaração de parâmetros é uma lista com a seguinte forma geral: tipo nome1, tipo nome2, ... , tipo nomeN Repare que o tipo deve ser especificado para cada uma das N variáveis de entrada. É na declaração de parâmetros que informamos ao compilador quais serão as entradas da função (assim como informamos a saída no tipo-de-retorno). O corpo da função é a sua alma. É nele que as entradas são processadas, saídas são geradas ou outras coisas são feitas. O Comando return O comando return tem a seguinte forma geral: return valor_de_retorno; ou return; Digamos que uma função está sendo executada. Quando se chega a uma declaração return a função é encerrada imediatamente e, se o valor de retorno é informado, a função retorna este valor. É importante lembrar que o valor de retorno fornecido tem que ser compatível com o tipo de retorno declarado para a função. Uma função pode ter mais de uma declaração return. Isto se torna claro quando pensamos que a função é terminada quando o programa chega à primeira declaração return. Abaixo estão dois exemplos de uso do return: 67 - 67 - #include <stdio.h> int Square (int a) { return (a*a); } int main () { int num; printf ("Entre com um numero: "); scanf ("%d",&num); num=Square(num); printf ("\n\nO seu quadrado vale: %d\n",num); return 0; } #include <stdio.h> int EPar (int a) { if (a%2) /* Verifica se a e divisivel por dois */ return 0; /* Retorna 0 se nao for divisivel */ else return 1; /* Retorna 1 se for divisivel */ } int main () { int num; printf ("Entre com numero: "); scanf ("%d",&num); if (EPar(num)) printf ("\n\nO numero e par.\n"); else printf ("\n\nO numero e impar.\n"); return 0; } É importante notar que, como as funções retornam valores, podemos aproveitá-los para fazer atribuições, ou mesmo para que estes valores participem de expressões. Mas não podemos fazer: func(a,b)=x; /* Errado! */ No segundo exemplo vemos o uso de mais de um return em uma função. Fato importante: se uma função retorna um valor você não precisa aproveitar este valor. Se você não fizer nada com o valor de retorno de uma função ele será descartado. Por exemplo, a função printf() retorna um inteiro que nós nunca usamos para nada. Ele é descartado. 70 terminou normalmente, e, se o programa retornar um valor diferente de zero, significa que o programa teve um término anormal. Se não estivermos interessados neste tipo de coisa, basta declarar a função main como retornando void. As duas funções main() abaixo são válidas: main (void) { .... return 0; } void main (void) { .... } A primeira forma é válida porque, como já vimos, as funções em C têm, por padrão, retorno inteiro.. Alguns compiladores reclamarão da segunda forma de main, dizendo que main sempre deve retornar um inteiro. Se isto acontecer com o compilador que você está utilizando, basta fazer main retornar um inteiro. Arquivos-Cabeçalhos Arquivos-cabeçalhos são aqueles que temos mandado o compilador incluir no início de nossos exemplos e que sempre terminam em .h. A extensão .h vem de header (cabeçalho em inglês). Já vimos exemplos como stdio.h, conio.h, string.h. Estes arquivos, na verdade, não possuem os códigos completos das funções. Eles só contêm protótipos de funções. É o que basta. O compilador lê estes protótipos e, baseado nas informações lá contidas, gera o código correto. O corpo das funções cujos protótipos estão no arquivo-cabeçalho, no caso das funções do próprio C, já estão compiladas e normalmente são incluídas no programa no instante da "linkagem". Este é o instante em que todas as referências a funções cujos códigos não estão nos nossos arquivos fontes são resolvidas, buscando este código nos arquivos de bibliotecas. Se você criar algumas funções que queira aproveitar em vários programas futuros, ou módulos de programas, você pode escrever arquivos-cabeçalhos e incluí-los também. Suponha que a função 'int EPar(int a)', do segundo exemplo da página c720.html seja importante em vários programas, e desejemos declará-la num módulo separado. No arquivo de cabeçalho chamado por exemplo de 'funcao.h' teremos a seguinte declaração: int EPar(int a); O código da função será escrito num arquivo a parte. Vamos chamá-lo de 'funcao.c'. Neste arquivo teremos a definição da função: 71 - 71 - int EPar (int a) { if (a%2) /* Verifica se a e divisivel por dois */ return 0; else return 1; } Por fim, no arquivo do programa principal teremos o programa principal. Vamos chamar este arquivo aqui de 'princip.c'. #include <stdio.h> #include "funcao.h" void main () { int num; printf ("Entre com numero: "); scanf ("%d",&num); if (EPar(num)) printf ("\n\nO numero e par.\n"); else printf ("\n\nO numero e impar.\n"); } Este programa poderia ser compilado usando a seguinte linha de comando para o gcc: gcc princip.c funcao.c -o saida onde 'saida' seria o arquivo executável gerado. Para gerar o executável deste programa no Rhide você deve criar um projeto, com a opção Project -> Open. Digitar um nome para o seu projeto (por exemplo saida). Ao apertar OK, o Rhide criará uma janela de projeto, onde você deverá adicionar os arquivos que serão usados para compor o seu executável. Para isto, você deve apertar a tecla <Insert> e em seguida escolher os arquivos princip.c e funcao.c . Daí, é só mandar compilar o projeto, com a opção Compile - > Make. Se não der erro, pode executar! AUTO AVALIAÇÃO Veja como você está: Escreva um programa que faça uso da função EDivisivel(int a, int b), criada na página c720.html. Organize o seu programa em três arquivos: o arquivo prog.c , conterá o programa principal; o arquivo func.c conterá a função; o arquivo func.h conterá o protótipo da função. Compile os arquivos e gere o executável a partir deles. 72 Escopo de Variáveis Já foi dada uma introdução ao escopo de variáveis. O escopo é o conjunto de regras que determinam o uso e a validade de variáveis nas diversas partes do programa. - Variáveis locais O primeiro tipo de variáveis que veremos são as variáveis locais. Estas são aquelas que só têm validade dentro do bloco no qual são declaradas. Sim. Podemos declarar variáveis dentro de qualquer bloco. Só para lembrar: um bloco começa quando abrimos uma chave e termina quando fechamos a chave. Até agora só tínhamos visto variáveis locais para funções completas. Mas um comando for pode ter variáveis locais e que não serão conhecidas fora dali. A declaração de variáveis locais é a primeira coisa que devemos colocar num bloco. A característica que torna as variáveis locais tão importantes é justamente a de serem exclusivas do bloco. Podemos ter quantos blocos quisermos com uma variável local chamada x, por exemplo, e elas não apresentarão conflito entre elas. A palavra reservada do C auto serve para dizer que uma variável é local. Mas não precisaremos usá-la pois as variáveis declaradas dentro de um bloco já são consideradas locais. Abaixo vemos um exemplo de variáveis locais: func1 (...) { int abc,x; ... } func (...) { int abc; ... } void main () { int a,x,y; for (...) { float a,b,c; ... } ... } No programa acima temos três funções. As variáveis locais de cada uma delas não irão interferir com as variáveis locais de outras funções. Assim, a variável abc de func1() não tem nada a ver (e pode ser tratada independentemente) com a variável abc de func2(). A variável x de func1() é também completamente independente da variável x de main(). As variáveis a, b e c são locais ao bloco for. Isto quer dizer que só são conhecidas dentro deste bloco for e são desconhecidas no resto da função main(). Quando usarmos a variável a dentro do bloco for estaremos usando a variável a local ao for e não a variável a da função main(). 75 - 75 - No exemplo acima o parâmetro formal num da função sqr() sofre alterações dentro da função, mas a variável num da função main() permanece inalterada: é uma chamada por valor. Outro tipo de passagem de parâmetros para uma função ocorre quando alterações nos parâmetros formais, dentro da função, alteram os valores dos parâmetros que foram passados para a função. Este tipo de chamada de função tem o nome de "chamada por referência". Este nome vem do fato de que, neste tipo de chamada, não se passa para a função os valores das variáveis, mas sim suas referências (a função usa as referências para alterar os valores das variáveis fora da função). O C só faz chamadas por valor. Isto é bom quando queremos usar os parâmetros formais à vontade dentro da função, sem termos que nos preocupar em estar alterando os valores dos parâmetros que foram passados para a função. Mas isto também pode ser ruim às vezes, porque podemos querer mudar os valores dos parâmetros fora da função também. O C++ tem um recurso que permite ao programador fazer chamadas por referência. Há entretanto, no C, um recurso de programação que podemos usar para simular uma chamada por referência. Quando queremos alterar as variáveis que são passadas para uma função, nós podemos declarar seus parâmetros formais como sendo ponteiros. Os ponteiros são a "referência" que precisamos para poder alterar a variável fora da função. O único inconveniente é que, quando usarmos a função, teremos de lembrar de colocar um & na frente das variáveis que estivermos passando para a função. Veja um exemplo: #include <stdio.h> void Swap (int *a,int *b); void main (void) { int num1,num2; num1=100; num2=200; Swap (&num1,&num2); printf ("\n\nEles agora valem %d %d\n",num1,num2); } void Swap (int *a,int *b) { int temp; temp=*a; *a=*b; *b=temp; } Não é muito difícil. O que está acontecendo é que passamos para a função Swap o endereço das variáveis num1 e num2. Estes endereços são copiados nos ponteiros a e b. Através do operador * estamos acessando o conteúdo apontado pelos ponteiros e modificando-o. Mas, quem é este conteúdo? Nada mais que os valores armazenados em num1 e num2, que, portanto, estão sendo modificados! 76 Espere um momento... será que nós já não vimos esta estória de chamar uma função com as variáveis precedidas de &? Já! É assim que nós chamamos a função scanf(). Mas porquê? Vamos pensar um pouco. A função scanf() usa chamada por referência porque ela precisa alterar as variáveis que passamos para ela! Não é para isto mesmo que ela é feita? Ela lê variáveis para nós e portanto precisa alterar seus valores. Por isto passamos para a função o endereço da variável a ser modificada! AUTO AVALIAÇÃO Veja como você está Escreva uma função que receba duas variáveis inteiras e "zere" o valor das variáveis. Use o que você aprendeu nesta página para fazer a implementação Vetores como Argumentos de Funções Quando vamos passar um vetor como argumento de uma função, podemos declarar a função de três maneiras equivalentes. Seja o vetor: int matrx [50]; e que queiramos passá-la como argumento de uma função func(). Podemos declarar func() das três maneiras seguintes: void func (int matrx[50]); void func (int matrx[]); void func (int *matrx); Nos três casos, teremos dentro de func() um int* chamado matrx. Ao passarmos um vetor para uma função, na realidade estamos passando um ponteiro. Neste ponteiro é armazenado o endereço do primeiro elemento do vetor. Isto significa que não é feita uma cópia, elemento a elemento do vetor. Isto faz com que possamos alterar o valor dos elementos do vetor dentro da função. Um exemplo disto já foi visto quando implementamos a função StrCpy(). AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia um vetor de inteiros pelo teclado e o apresente na tela. Crie uma função (void levetor(int *vet, int dimensao)) para fazer a leitura do vetor. Os Argumentos argc e argv A função main() pode ter parâmetros formais. Mas o programador não pode escolher quais serão eles. A declaração mais completa que se pode ter para a função main() é: int main (int argc,char *argv[]); 77 - 77 - Os parâmetros argc e argv dão ao programador acesso à linha de comando com a qual o programa foi chamado. O argc (argument count) é um inteiro e possui o número de argumentos com os quais a função main() foi chamada na linha de comando. Ele é, no mínimo 1, pois o nome do programa é contado como sendo o primeiro argumento. O argv (argument values) é um ponteiro para uma matriz de strings. Cada string desta matriz é um dos parâmetros da linha de comando. O argv[0] sempre aponta para o nome do programa (que, como já foi dito, é considerado o primeiro argumento). É para saber quantos elementos temos em argv que temos argc. Exemplo: Escreva um programa que faça uso dos parâamentros argv e argc. O programa deverá receber da linha de comando o dia, mês e ano correntes, e imprimir a data em formato apropriado. Veja o exemplo, supondo que o executável se chame data: data 19 04 99 O programa deverá imprimir: 19 de abril de 1999 #include <stdio.h> #include <stdlib.h> void main(int argc, char *argv[]) { int mes; char *nomemes [] = {"Janeiro", "Fevereiro", "Março", "Abril", "Maio", "Junho", "Julho", "Agosto", "Setembro", "Outubro", "Novembro", "Dezembro"}; if(argc == 4) /* Testa se o numero de parametros fornecidos esta' correto o primeiro parametro e' o nome do programa, o segundo o dia o terceiro o mes e o quarto os dois ultimos algarismos do ano */ { mes = atoi(argv[2]); /* argv contem strings. A string referente ao mes deve ser transformada em um numero inteiro. A funcao atoi esta sendo usada para isto: recebe a string e transforma no inteiro equivalente */ if (mes<1 || mes>12) /* Testa se o mes e' valido */ printf("Erro!\nUso: data dia mes ano, todos inteiros"); else printf("\n%s de %s de 19%s", argv[1], nomemes[mes-1], argv[3]); } else printf("Erro!\nUso: data dia mes ano, todos inteiros"); } 80 A diferença entre se usar " " e < > é somente a ordem de procura nos diretórios pelo arquivo especificado. Se você quiser informar o nome do arquivo com o caminho completo, ou se o arquivo estiver no diretório de trabalho, use " ". Se o arquivo estiver nos caminhos de procura pré-especificados do compilador, isto é, se ele for um arquivo do próprio sistema (como é o caso de arquivos como stdio.h, string.h, etc...) use < >. Observe que não há ponto e vírgula após a diretiva de compilação. Esta é uma característica importante de todas as diretivas de compilação e não somente da diretiva #include As Diretivas define e undef A diretiva #define tem a seguinte forma geral: #define nome_da_macro sequência_de_caracteres Quando você usa esta diretiva, você está dizendo ao compilador para que, toda vez que ele encontrar o nome_da_macro no programa a ser compilado, ele deve substituí-lo pela sequência_de_caracteres fornecida. Isto é muito útil para deixar o programa mais geral. Veja um exemplo: #include <stdio.h> #define PI 3.1416 #define VERSAO "2.02" int main () { printf ("Programa versao %s",VERSAO); printf ("O numero pi vale: %f",PI); return 0; } Se quisermos mudar o nosso valor de PI, ou da VERSAO, no programa acima, basta mexer no início do programa. Isto torna o programa mais flexível. Há quem diga que, em um programa, nunca se deve usar constantes como 10, 3.1416, etc., pois estes são números que ninguém sabe o que significam (muitas pessoas os chamam de "números mágicos"). Ao invés disto, deve-se usar apenas #defines. É uma convenção de programação (que deve ser seguida, pois torna o programa mais legível) na linguagem C que as macros declaradas em #defines devem ser todas em maiúsculas. Um outro uso da diretiva #define é o de simplesmente definir uma macro. Neste caso usa-se a seguinte forma geral: #define nome_da_macro Neste caso o objetivo não é usar a macro no programa (pois ela seria substituída por nada), mas, sim, definir uma macro para ser usada como uma espécie de flag. Isto quer dizer que estamos definindo um valor como sendo "verdadeiro" para depois podermos testá-lo. Também é possível definir macros com argumentos. Veja o exemplo a seguir: 81 - 81 - #define max(A,B) ((A>B) ? (A):(B)) #define min(A,B) ((A<B) ? (A):(B)) ... x = max(i,j); y = min(t,r); Embora pareça uma chamada de função, o uso de max (ou min) simplesmente substitui, em tempo de compilação, o código especificado. Cada ocorrência de um parâmetro formal (A ou B, na definição) será substituído pelo argumento real correspondente. Assim, a linha de código: x = max(i,j); será substituída pela linha: x = ((i)>(j) ? (i):(j)); A linha de código: x = max(p+q,r+s); será substituída pela linha: x = ((p+q)>(r+s) ? (p+q):(r+s)); Isto pode ser muito útil. Verifique que as macros max e min não possuem especificação de tipo. Logo, elas trabalham corretamente para qualquer tipo de dado, enquanto os argumentos passados forem coerentes. Mas isto pode trazer também algumas armadilhas. Veja que a linha x = max(p++,r++); será substituída pelo código x = ((p++)>(r++) ? (p++):(r++)); e em consequência, incrementará o maior valor duas vezes. Outra armadilha em macros está relacionada com o uso de parênteses. Seja a macro: #define SQR(X) X*X Imagine que você utilize esta macro na expressão abaixo: y = SQR(A+B); Ao fazer isto, a substituição que será efetuada não estará correta. A expressão gerada será: y = A+B*A+B; que obviamente é diferente de (A+B)*(A+B) ! 82 A solução para este problema é incluir parênteses na definição da macro: #define SQR(X)(X)*(X) Quando você utiliza a diretiva #define nunca deve haver espaços em branco no identificador. Por exemplo, a macro: #define PRINT (i) printf(" %d \n", i) não funcionará corretamente porque existe um espaço em branco entre PRINT e (i). Ao se tirar o espaço, a macro funcionará corretamente e poderá ser utilizada para imprimir o número inteiro i, saltando em seguida para a próxima linha. A diretiva #undef tem a seguinte forma geral: #undef nome_da_macro Ela faz com que a macro que a segue seja apagada da tabela interna que guarda as macros.O compilador passa a partir deste ponto a não conhecer mais esta macro. AUTO AVALIAÇÃO Veja como você está: Escreva uma macro que retorne 1 se o seu argumento for um número ímpar e 0 se for um número par. As Diretivas ifdef e endif Nesta seção, e até mais a frente, veremos as diretivas de compilação condicional. Elas são muito parecidas com os comandos de execução condicional do C. As duas primeiras diretivas que veremos são as #ifdef e #endif. Suas formas gerais são: #ifdef nome_da_macro sequência_de_declarações #endif A sequência de declarações será compilada apenas se o nome da macro estiver definido. A diretiva de compilação #endif é util para definir o fim de uma sequência de declarações para todas as diretivas de compilação condicional. As linhas #define PORT_0 0x378 ... /* Linhas de codigo qualquer... */ ... #ifdef PORT_0 #define PORTA PORT_0 #include "../sys/port.h" #endif demonstram como estas diretivas podem ser utilizadas. Caso PORT_0 tenha sido previamente definido, a macro PORTA é definida e o header file port.h é incluído. 85 - 85 - AULA 9 - Entradas e Saídas Padronizadas Introdução O sistema de entrada e saída da linguagem C está estruturado na forma de uma biblioteca de funções . Já vimos algumas destas funções, e agora elas serão reestudadas. Novas funções também serão apresentadas. Não é objetivo deste curso explicar, em detalhes, todas as possíveis funções da biblioteca de entrada e saída do C. A sintaxe completa destas funções pode ser encontrada no manual do seu compilador. Alguns sistemas trazem um descrição das funções na ajuda do compilador, que pode ser acessada "on line". Isto pode ser feito, por exemplo, no Rhide. Um ponto importante é que agora, quando apresentarmos uma função, vamos, em primeiro lugar, apresentar o seu protótipo. Você já deve ser capaz de interpretar as informações que um protótipo nos passa. Se não, deve voltar a estudar a aula sobre funções. Outro aspecto importante, quando se discute a entrada e saída na linguagem C é o conceito de fluxo. Seja qual for o dispositivo de entrada e saída (discos, terminais, teclados, acionadores de fitas) que se estiver trabalhando, o C vai enxergá-lo como um fluxo, que nada mais é que um dispositivo lógico de entrada ou saída. Todos os fluxos são similares em seu funcionamento e independentes do dispositivo ao qual estão associados. Assim, as mesmas funções que descrevem o acesso aos discos podem ser utilizadas para se acessar um terminal de vídeo. Todas as operações de entrada e saída são realizadas por meio de fluxos. Na linguagem C, um arquivo é entendido como um conceito que pode ser aplicado a arquivos em disco, terminais, modens, etc ... Um fluxo é associado a um arquivo através da realização de uma operação de abertura. Uma vez aberto, informações podem ser trocadas entre o arquivo e o programa. Um arquivo é dissociado de um fluxo através de uma operação de fechamento de arquivo. Lendo e Escrevendo Caracteres Uma das funções mais básicas de um sistema é a entrada e saída de informações em dispositivos. Estes podem ser um monitor, uma impressora ou um arquivo em disco. Vamos ver os principais comandos que o C nos fornece para isto. - getche e getch As funções getch() e getche() não são definidas pelo padrão ANSI. Porém, elas geralmente são incluídas em compiladores baseados no DOS, e se encontram no header file conio.h. Vale a pena repetir: são funções comuns apenas para compiladores baseados em DOS e, se você estiver no UNIX normalmente não terá estas funções disponíveis. 86 Protótipos: int getch (void); int getche (void); getch() espera que o usuário digite uma tecla e retorna este caractere. Você pode estar estranhando o fato de getch() retornar um inteiro, mas não há problema pois este inteiro é tal que quando igualado a um char a conversão é feita corretamente. A função getche() funciona exatamente como getch(). A diferença é que getche() gera um "echo" na tela antes de retornar a tecla. Se a tecla pressionada for um caractere especial estas funções retornam zero. Neste caso você deve usar as funções novamente para pegar o código da tecla extendida pressionada. A função equivalente a getche() no mundo ANSI é o getchar(). O problema com getchar é que o caracter lido é colocado em uma área intermediária até que o usuário digite um <ENTER>, o que pode ser extremamente inconveniente em ambientes interativos. - putchar Protótipo: int putchar (int c); putchar() coloca o caractere c na tela. Este caractere é colocado na posição atual do cursor. Mais uma vez os tipos são inteiros, mas você não precisa se preocupar com este fato. O header file é stdio.h. Lendo e Escrevendo Strings - gets Protótipo: char *gets (char *s); Pede ao usuário que entre uma string, que será armazenada na string s. O ponteiro que a função retorna é o próprio s. gets não é uma função segura. Por quê? Simplesmente porque com gets pode ocorrer um estouro da quantidade de posições que foi especificada na string . Veja o exemplo abaixo: #include <stdio.h> int main() { char buffer[10]; printf("Entre com o seu nome"); gets(buffer); printf("O nome é: %s", buffer); return 0; } 87 - 87 - Se o usuário digitar como entrada: Renato Cardoso Mesquita ou seja, digitar um total de 23 caracteres: 24 posições (incluindo o '\0' ) serão utilizadas para armazenar a string. Como a string buffer[] só tem 10 caracteres, os 14 caracteres adicionais serão colocados na área de memória subsequente à ocupada por ela, escrevendo uma região de memória que não está reservada à string. Este efeito é conhecido como "estouro de buffer" e pode causar problemas imprevisíveis. Uma forma de se evitar este problema é usar a função fgets, conforme veremos posteriormente - puts Protótipo: int puts (char *s); puts() coloca a string s na tela. AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia nomes pelo teclado e os imprima na tela. Use as funções puts e gets para a leitura e impressão na tela. Entrada e Saída Formatada As funções que resumem todas as funções de entrada e saída formatada no C são as funções printf() e scanf(). Um domínio destas funções é fundamental ao programador. - printf Protótipo: int printf (char *str,...); As reticências no protótipo da função indicam que esta função tem um número de argumentos variável. Este número está diretamente relacionado com a string de controle str, que deve ser fornecida como primeiro argumento. A string de controle tem dois componentes. O primeiro são caracteres a serem impressos na tela. O segundo são os comandos de formato. Como já vimos, os últimos determinam uma exibição de variáveis na saída. Os comandos de formato são precedidos de %. A cada comando de formato deve corresponder um argumento na função printf(). Se isto não ocorrer podem acontecer erros imprevisíveis no programa. 90 int sprintf (char *destino, char *controle, ...); int sscanf (char *destino, char *controle, ...); Estas funções são muito utilizadas para fazer a conversão entre dados na forma numérica e sua representação na forma de strings. No programa abaixo, por exemplo, a variável i é "impressa" em string1. Além da representação de i como uma string, string1 também conterá "Valor de i=" . #include <stdio.h> int main() { int i; char string1[20]; printf( " Entre um valor inteiro: "); scanf("%d", &i); sprintf(string1,"Valor de i = %d", i); puts(string1); return 0; } Já no programa abaixo, foi utilizada a função sscanf para converter a informação armazenada em string1 em seu valor numérico: #include <stdio.h> int main() { int i, j, k; char string1[]= "10 20 30"; sscanf(string1, "%d %d %d", &i, &j, &k); printf("Valores lidos: %d, %d, %d", i, j, k); return 0; } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia (via teclado) e apresente uma matriz 3X3 na tela. Utilize os novos códigos de formato aprendidos para que a matriz se apresente corretamente identada. Altere os tipos de dados da matriz (int, float, double) e verifique a formatação correta para a identação. Verifique também a leitura e impressão de números hexadecimais. Abrindo e Fechando um Arquivo O sistema de entrada e saída do ANSI C é composto por uma série de funções, cujos protótipos estão reunidos em stdio.h . Todas estas funções trabalham com o conceito de "ponteiro de arquivo". Este não é um tipo propriamente dito, mas uma definição usando o comando typedef. Esta definição 91 - 91 - também está no arquivo stdio.h. Podemos declarar um ponteiro de arquivo da seguinte maneira: FILE *p; p será então um ponteiro para um arquivo. É usando este tipo de ponteiro que vamos poder manipular arquivos no C. - fopen Esta é a função de abertura de arquivos. Seu protótipo é: FILE *fopen (char *nome_do_arquivo,char *modo); O nome_do_arquivo determina qual arquivo deverá ser aberto. Este nome deve ser válido no sistema operacional que estiver sendo utilizado. O modo de abertura diz à função fopen() que tipo de uso você vai fazer do arquivo. A tabela abaixo mostra os valores de modo válidos: Modo Significado "r" Abre um arquivo texto para leitura. O arquivo deve existir antes de ser aberto. "w" Abrir um arquivo texto para gravação. Se o arquivo não existir, ele será criado. Se já existir, o conteúdo anterior será destruído. "a" Abrir um arquivo texto para gravação. Os dados serão adicionados no fim do arquivo ("append"), se ele já existir, ou um novo arquivo será criado, no caso de arquivo não existente anteriormente. "rb" Abre um arquivo binário para leitura. Igual ao modo "r" anterior, só que o arquivo é binário. "wb" Cria um arquivo binário para escrita, como no modo "w" anterior, só que o arquivo é binário. "ab" Acrescenta dados binários no fim do arquivo, como no modo "a" anterior, só que o arquivo é binário. "r+" Abre um arquivo texto para leitura e gravação. O arquivo deve existir e pode ser modificado. "w+" Cria um arquivo texto para leitura e gravação. Se o arquivo existir, o conteúdo anterior será destruído. Se não existir, será criado. "a+" Abre um arquivo texto para gravação e leitura. Os dados serão adicionados no fim do arquivo se ele já existir, ou um novo arquivo será criado, no caso de arquivo não existente anteriormente. "r+b" Abre um arquivo binário para leitura e escrita. O mesmo que "r+" acima, só que o arquivo é binário. "w+b" Cria um arquivo binário para leitura e escrita. O mesmo que "w+" acima, só que o arquivo é binário. "a+b" Acrescenta dados ou cria uma arquivo binário para leitura e escrita. O mesmo que "a+" acima, só que o arquivo é binário Poderíamos então, para abrir um arquivo binário para escrita, escrever: FILE *fp; /* Declaração da estrutura fp=fopen ("exemplo.bin","wb"); /* o arquivo se chama exemplo.bin e está localizado no diretório corrente */ if (!fp) printf ("Erro na abertura do arquivo."); 92 A condição !fp testa se o arquivo foi aberto com sucesso porque no caso de um erro a função fopen() retorna um ponteiro nullo (NULL). Uma vez aberto um arquivo, vamos poder ler ou escrever nele utilizando as funções que serão apresentadas nas próximas páginas. Toda vez que estamos trabalhando com arquivos, há uma espécie de posição atual no arquivo. Esta é a posição de onde será lido ou escrito o próximo caractere. Normalmente, num acesso sequencial a um arquivo, não temos que mexer nesta posição pois quando lemos um caractere a posição no arquivo é automaticamente atualizada. Num acesso randômico teremos que mexer nesta posição (ver fseek()). - exit Aqui abrimos um parênteses para explicar a função exit() cujo protótipo é: void exit (int codigo_de_retorno); Para utilizá-la deve-se colocar um include para o arquivo de cabeçalho stdlib.h. Esta função aborta a execução do programa. Pode ser chamada de qualquer ponto no programa e faz com que o programa termine e retorne, para o sistema operacional, o código_de_retorno. A convenção mais usada é que um programa retorne zero no caso de um término normal e retorne um número não nulo no caso de ter ocorrido um problema. A função exit() se torna importante em casos como alocação dinâmica e abertura de arquivos pois nestes casos, se o programa não conseguir a memória necessária ou abrir o arquivo, a melhor saída pode ser terminar a execução do programa. Poderíamos reescrever o exemplo da seção anterior usando agora o exit() para garantir que o programa não deixará de abrir o arquivo: #include <stdio.h> #include <stdlib.h> /* Para a função exit() */ main (void) { FILE *fp; ... fp=fopen ("exemplo.bin","wb"); if (!fp) { printf ("Erro na abertura do arquivo. Fim de programa."); exit (1); } ... return 0; } - fclose Quando acabamos de usar um arquivo que abrimos, devemos fechá-lo. Para tanto usa-se a função fclose(): int fclose (FILE *fp); 95 - 95 - #include <stdio.h> #include <stdlib.h> #include <string.h> void main() { FILE *p; char c, str[30], frase[80] = "Este e um arquivo chamado: "; int i; /* Le um nome para o arquivo a ser aberto: */ printf("\n\n Entre com um nome para o arquivo:\n"); gets(str); if (!(p = fopen(str,"w"))) /* Caso ocorra algum erro na abertura do arquivo..*/ { /* o programa aborta automaticamente */ printf("Erro! Impossivel abrir o arquivo!\n"); exit(1); } /* Se nao houve erro, imprime no arquivo e o fecha ...*/ strcat(frase, str); for (i=0; frase[i]; i++) putc(frase[i],p); fclose(p); /* Abre novamente para leitura */ p = fopen(str,"r"); c = getc(p); /* Le o primeiro caracter */ while (!feof(p)) /* Enquanto não se chegar no final do arquivo */ { printf("%c",c); /* Imprime o caracter na tela */ c = getc(p); /* Le um novo caracter no arquivo */ } fclose(p); /* Fecha o arquivo */ } AUTO-AVALIAÇÃO Veja como você está: escreva um programa que abra um arquivo texto e conte o número de caracteres presentes nele. Imprima o número de caracteres na tela. 96 Outros Comandos de Acesso a Arquivos - Arquivos pré-definidos Quando se começa a execução de um programa, o sistema automaticamente abre alguns arquivos pré-definidos: • stdin: dispositivo de entrada padrão (geralmente o teclado) • stdout: dispositivo de saída padrão (geralmente o vídeo) • stderr: dispositivo de saída de erro padrão (geralmente o vídeo) • stdaux: dispositivo de saída auxiliar (em muitos sistemas, associado à porta serial) • stdprn : dispositivo de impressão padrão (em muitos sistemas, associado à porta paralela) Cada uma destas constantes pode ser utilizada como um ponteiro para FILE, para acessar os periféricos associados a eles. Desta maneira, pode-se, por exemplo, usar: ch =getc(stdin); para efetuar a leitura de um caracter a partir do teclado, ou : putc(ch, stdout); para imprimí-lo na tela. - fgets Para se ler uma string num arquivo podemos usar fgets() cujo protótipo é: char *fgets (char *str, int tamanho,FILE *fp); A função recebe 3 argumentos: a string a ser lida, o limite máximo de caracteres a serem lidos e o ponteiro para FILE, que está associado ao arquivo de onde a string será lida. A função lê a string até que um caracter de nova linha seja lido ou tamanho-1 caracteres tenham sido lidos. Se o caracter de nova linha ('\n') for lido, ele fará parte da string, o que não acontecia com gets. A string resultante sempre terminará com '\0' (por isto somente tamanho-1 caracteres, no máximo, serão lidos). A função fgets é semelhante à função gets(), porém, além dela poder fazer a leitura a partir de um arquivo de dados e incluir o caracter de nova linha na string, ela ainda especifica o tamanho máximo da string de entrada. Como vimos, a função gets não tinha este controle, o que poderia acarretar erros de "estouro de buffer". Portanto, levando em conta que o ponteiro fp pode ser substituído por stdin, como vimos acima, uma alternativa ao uso de gets é usar a seguinte construção: fgets (str, tamanho, stdin); onde str e' a string que se está lendo e tamanho deve ser igual ao tamanho alocado para a string subtraído de 1, por causa do '\0'. 97 - 97 - - fputs Protótipo: char *fputs (char *str,FILE *fp); Escreve uma string num arquivo. - ferror e perror Protótipo de ferror: int ferror (FILE *fp); A função retorna zero, se nenhum erro ocorreu e um número diferente de zero se algum erro ocorreu durante o acesso ao arquivo. ferror() se torna muito útil quando queremos verificar se cada acesso a um arquivo teve sucesso, de modo que consigamos garantir a integridade dos nossos dados. Na maioria dos casos, se um arquivo pode ser aberto, ele pode ser lido ou gravado. Porém, existem situações em que isto não ocorre. Por exemplo, pode acabar o espaço em disco enquanto gravamos, ou o disco pode estar com problemas e não conseguimos ler, etc. Uma função que pode ser usada em conjunto com ferror() é a função perror() (print error), cujo argumento é uma string que normalmente indica em que parte do programa o problema ocorreu. No exemplo a seguir, fazemos uso de ferror, perror e fputs #include <stdio.h> #include <stdlib.h> int main() { FILE *pf; char string[100]; if((pf = fopen("arquivo.txt","w")) ==NULL) { printf("\nNao consigo abrir o arquivo ! "); exit(1); } do { printf("\nDigite uma nova string. Para terminar, digite <enter>: "); gets(string); fputs(string, pf); putc('\n', pf); if(ferror(pf)) { perror("Erro na gravacao"); fclose(pf); exit(1); } } while (strlen(string) > 0); fclose(pf); }
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved