ondas eletromagneticas 2

ondas eletromagneticas 2

(Parte 1 de 7)

1221Navegação eletrônica e em condições especiais

Noções sobre ondas eletromagnéticas e acústicas

34.1NAVEGAÇÃO ELETRÔNICA

Em sua definição mais rigorosa, a expressão Navegação Eletrônica refere-se a todos os usos da eletrônica na navegação. Assim, o termo inclui, por exemplo, o emprego da Agulha Giroscópica para o governo do navio e a utilização do Ecobatímetro na navegação costeira ou em águas restritas. Entretanto, na prática, a expressão Navegação Eletrônica aplica-se quando os dois propósitos básicos da navegação (determinação da posição e controle dos movimentos do navio) são efetuados usando meios eletrônicos. Então, pode-se definir Navegação Eletrônica como aquela que envolve o emprego de equipamentos e sistemas eletrônicos para determinação da posição e controle dos movimentos do navio.

A expressão Navegação Eletrônica é mais abrangente que o termo Radionavegação, que se limita aos equipamentos eletrônicos de navegação que usam ondas de radiofreqüência. Assim, por exemplo, o sonar doppler e o sistema de navegação inercial são recursos de Navegação Eletrônica, mas não são de Radionavegação.

Os instrumentos e equipamentos eletrônicos, apesar de todos os avanços e dos desenvolvimentos recentes, em termos de confiabilidade, precisão e área de cobertura, ainda são tradicionalmente denominados de auxílios eletrônicos à navegação, para denotar que constituem recursos complementares aos métodos clássicos de navegação. Embora sistemas eletrônicos, como o GPS (“Global Positioning System”), sejam capazes de

Noções sobre ondas eletromagnéticas e acústicas

Navegação eletrônica e em condições especiais1222 prover cobertura mundial permanente, com grande precisão de posicionamento e confiabilidade, o navegante não deve esquecer que a sua utilização depende do perfeito funcionamento de instrumentos delicadíssimos, sobre os quais não exerce qualquer tipo de controle, e que a interpretação das informações fornecidas requer o conhecimento de conceitos tradicionais de navegação e depende da experiência do operador. Em suma, não se pode confiar cegamente na “push-button navigation”, sob pena de colocar em risco a segurança do navio e da tripulação. Por esta razão, recomenda-se:

1. Somente conduzir a navegação exclusivamente por métodos eletrônicos naquelas circunstâncias em que não seja possível a sua verificação pelos métodos convencionais, em virtude de má visibilidade, ausência de astros para observação, inexistência de auxílios visuais à navegação ou pontos notáveis, etc.; se essa situação ocorrer, recordar sempre que uma deficiência instrumental, um erro de interpretação, ou, ainda, anomalias na propagação das ondas eletromagnéticas, ou acústicas, podem levar a resultados errados e situações perigosas;

2. aproveitar todas as ocasiões para verificar o desempenho dos sistemas eletrônicos, por comparação com os métodos clássicos de navegação, a fim de poder formar um juízo de valor sobre sua confiabilidade, precisão e cobertura; e

3. providenciar para que os equipamentos sejam submetidos às rotinas de manutenção recomendadas, conhecer completamente os procedimentos para operação dos instrumentos e sistemas, suas possibilidades e limitações, além de verificar o seu funcionamento, antes de o navio suspender.

Quando estudamos os métodos clássicos de navegação, verificamos que a posição do navio é obtida utilizando o conceito de linha de posição (LDP), definida como o lugar geométrico de todas as posições possíveis de serem ocupadas pelo navio, tendo sido efetuada uma determinada observação, em um dado instante. A posição, como se sabe, estará na interseção de duas ou mais LDP. Ademais, vimos que as LDP podem ser obtidas por métodos visuais (reta de marcação, alinhamento, distância pelo ângulo vertical, segmento capaz, etc.) ou astronômicos (reta de posição astronômica).

A Navegação Eletrônica também utiliza o conceito de linha de posição para determinação da posição do navio. As LDP eletrônicas são obtidas por três métodos básicos:

– método direcional; – método de medição de distâncias, ou diferença de distâncias; e

– método composto direcional-distâncias.

O método direcional consiste na determinação de uma reta de marcação eletrônica (ângulo entre uma direção de referência e a linha que une o navio ao objeto/estação). Como exemplos de equipamentos de Navegação Eletrônica que empregam o método direcional na determinação da LDP, citam-se o Radiogoniômetro e o Consol, além do Radar, quando usado na obtenção de marcações.

O método de medição de distâncias, ou diferença de distâncias, consiste na determinação de uma circunferência de igual distância, ou de uma hipérbole de posição (lugar geométrico de pontos que têm a mesma diferença de distâncias a dois pontos fixos). No primeiro caso (método de medição de distâncias), citam-se o Sistema GPS e o Radar, quan- do usado na obtenção de distâncias. O método de medição de diferença de distâncias é utilizado pelos sistemas de navegação hiperbólica (Loran-C, Decca e Omega). Mesmo os equipamentos GPS, Loran-C e Omega que incorporam computadores, os quais já fornecem

1223Navegação eletrônica e em condições especiais

Noções sobre ondas eletromagnéticas e acústicas diretamente as coordenadas da posição (Latitude e Longitude), utilizam para os seus cálculos LDP eletrônicas determinadas pelos métodos citados.

O método composto direcional-distâncias é empregado pelo Radar, quando determinam-se posições por marcações e distâncias radar, conforme estudado no Volume I, Capítulo 14.

Os equipamentos de navegação inercial utilizam um método próprio, baseado nos princípios da Navegação Estimada, determinando a posição do navio através dos rumos e distâncias navegadas, medidos com grande precisão, a partir de uma posição inicial conhecida.

É comum, também, denominar de Sistema de Navegação Eletrônica o conjunto de instrumentos, equipamentos e dispositivos, em terra e a bordo, que possibilitam a obtenção de uma LDP eletrônica, ou de um ponto completo (Latitude e Longitude). O radar e os equipamentos de navegação inercial e doppler constituem, por si só, um sistema, pois são “self contained”, isto é, com eles podemos determinar a posição do navio sem auxílio de dispositivos baseados em terra, ou no espaço.

Uma das primeiras perguntas formuladas acerca dos sistemas de Navegação Eletrônica refere-se à precisão (acurácia)1 com que determinam as posições do navio. De interesse primordial para o navegante é a precisão ou acurácia absoluta, isto é, a exatidão da posição obtida, com respeito à Terra e seu sistema de coordenadas (Latitude e Longitude). Outros conceitos relacionados à precisão são os de previsibilidade, repetitibilidade e precisão relacional, adiante explicados.

Quando comentarmos a precisão dos sistemas de Navegação Eletrônica estudados nos capítulos que se seguem, estaremos nos referindo à acurácia absoluta dos mesmos, exceto quando especificamente indicado de outro modo.

Esta precisão pode ser medida de uma série de maneiras. O erro médio quadrático

(RMS – “root mean square”) é a medida estatística da variabilidade de uma única LDP; este valor unidimensional tem pouca utilidade no caso de posições que resultam de várias LDP. Mais conveniente é o conceito de erro circular provável (CEP – “circular error probable”), que é o raio de um círculo no interior do qual existe 50% de probabilidade das posições determinadas estarem localizadas.

No entanto, quando a interseção das LDP resulta em uma elipse, em vez de um círculo, utiliza-se o termo erro radial (dRMS – “distance root mean square”) para definir a precisão da posição. O erro radial (dRMS) significa que uma posição determinada terá cerca de 67% de probabilidade de ter um erro igual ou menor que o seu valor. Quando se usa 2 dRMS (ou seja, duas vezes o desvio padrão anterior), esta probabilidade cresce para 95% a 98%.

A previsibilidade de um sistema de Navegação Eletrônica consiste no conhecimento das características de propagação do sinal sob determinadas condições atmosféricas. A previsibilidade é influenciada, principalmente, pela refração atmosférica e pela condutividade da superfície de propagação. Sabe-se, por exemplo, que o sinal deEmbora o termo técnico-científico mais correto para definir o grau de exatidão de uma medida seja acurácia, este Manual utilizará a palavra precisão com o mesmo significado, em virtude desta ser de uso mais comum, já consagrado na navegação.

Noções sobre ondas eletromagnéticas e acústicas

Navegação eletrônica e em condições especiais1224 radiogoniometria perde alcance e pode induzir erros na marcação radiogoniométrica quando se propaga sobre terra ou sobre água doce. Além disso, é também afetado pelas condições ionosféricas durante a noite (efeito noturno). O sinal Omega, por outro lado, é afetado pela calota polar, quando se propaga em Latitudes elevadas. Ademais, as hipérboles de posição traçadas nas Cartas Omega correspondem a condições padrão de propagação. Quando as condições reais diferem consideravelmente dos padrões, as leituras do receptor Omega necessitam ser corrigidas, antes do traçado das LDP na carta.

O segundo conceito, denominado repetitibilidade refere-se à capacidade de um sistema de indicar as mesmas medidas, sempre que se estiver na mesma posição, ou seja, está relacionado à capacidade de retornar exatamente a uma determinada posição, em uma ocasião posterior, orientado pelas coordenadas lidas anteriormente no sistema, quando na mesma posição. Isto é importante, por exemplo, para embarcações de pesca ou de pesquisa científica.

Além desses, é relevante o conceito de precisão relacional, que consiste na exatidão de uma posição, com respeito a outra posição determinada pelo mesmo sistema.

34.2ONDAS ELETROMAGNÉTICAS E ACÚSTICAS

Os sensores e sistemas de Navegação Eletrônica têm que operar em diferentes meios, entre os quais estão o espaço, a atmosfera e as águas dos mares, oceanos e rios. Na execução da Navegação Eletrônica e em outras atividades relacionadas à navegação, como a recepção de informações meteorológicas e de Avisos aos Navegantes, dados devem ser transmitidos através de um ou mais desses meios. Basicamente, existem duas maneiras de se conseguir isso: pelo uso das ondas eletromagnéticas ou das ondas acústicas. O primeiro caso inclui a radionavegação, o radar e as comunicações. As ondas acústicas compreendem o emprego do som, ou das ondas sonoras e ultra-sonoras, na navegação.

No espaço, ou no vácuo, apenas as ondas eletromagnéticas podem se propagar entre dois pontos. Na atmosfera, tanto as ondas eletromagnéticas como as acústicas podem se propagar, embora as primeiras o façam com maiores vantagens. Essas vantagens fazem com que as ondas eletromagnéticas dominem completamente o panorama dos sistemas de navegação para uso na atmosfera e no espaço. No oceano, a situação se inverte, e as ondas acústicas dominam os sistemas desenvolvidos para atuar neste meio.

A Navegação Eletrônica, por se desenvolver tanto na atmosfera como nos mares e oceanos, exige compreensão da natureza das ondas eletromagnéticas e acústicas e das suas implicações sobre a capacidade de um navegante obter as informações que necessita para a condução segura do navio ou embarcação.

As ondas representam, em ambos os casos, o mecanismo segundo o qual a propagação se efetua, existindo, portanto, várias semelhanças entre os processos. Entretanto, os fenômenos físicos responsáveis pela geração de cada um dos tipos de onda diferem fundamentalmente. É importante que se tenha uma razoável noção dessas diferenças e semelhanças. Os itens que se seguem buscam apresentar uma resenha dos conceitos básicos referentes às ondas eletromagnéticas e acústicas, abordadas separadamente.

1225Navegação eletrônica e em condições especiais

Noções sobre ondas eletromagnéticas e acústicas

34.3TEORIA BÁSICA DA ONDA ELETROMAGNÉTICA

Para entender os princípios em que se baseia a Radionavegação, o navegante deverá compreender a forma em que se geram as ondas eletromagnéticas e as principais características de sua propagação.

Os fenômenos nos quais intervêm tanto a corrente elétrica como o campo magnético, são denominados de fenômenos eletromagnéticos. São três os fenômenos eletromagnéticos básicos:

1. Se uma corrente elétrica fluir por um condutor será criado, ao redor do mesmo, um campo magnético (o condutor produzirá um campo magnético, como se fosse um ímã);

2. se um condutor percorrido por uma corrente elétrica for colocado dentro de um campo magnético, ficará sujeito a uma força; e

3. se um condutor fechado for colocado em um campo magnético, de modo que a superfície determinada pelo condutor seja atravessada pelo fluxo magnético, a variação do fluxo induzirá no condutor uma corrente elétrica.

A teoria básica da corrente alternada estabelece que um campo variável, que resulta do fluxo de uma corrente alternada em um circuito, induz uma voltagem em um condutor colocado dentro do campo. Na realidade, a voltagem é induzida ainda que não haja condutor no campo. Esta voltagem induzida no espaço, com a forma mostrada na figura 34.1, é, de fato, um campo elétrico. Desta forma, um campo magnético cria no espaço um campo elétrico variável. Este campo elétrico, por sua vez, produz uma corrente

Figura 34.1 – Campo Elétrico Variável (Curva Representativa da Geração de Corrente Alternada)

Noções sobre ondas eletromagnéticas e acústicas

Navegação eletrônica e em condições especiais1226 de deslocamento que gera um campo magnético, o qual, por seu turno, cria um campo elétrico, e assim por diante. O processo mediante o qual estes campos se induzem mutuamente denomina-se indução eletromagnética. A combinação de campos é denominada campo eletromagnético .

Em um campo de irradiação eletromagnética, as linhas do campo elétrico se fecham sobre si mesmas, não estando unidas a cargas elétricas; e as linhas do campo magnético não estão relacionadas à corrente em um condutor. Os campos são verdadeiramente independentes, como se houvessem sido liberados no espaço. Há, portanto, uma idéia de movimento no processo, sendo esta propagação denominada onda eletromagnética.

Toda a teoria sobre esta matéria foi desenvolvida há mais de 100 anos por J. C.

Maxwell, que correlacionou uma série de quatro equações parcialmente diferenciadas, que descrevem a interação das componentes elétricas e magnéticas do campo eletromagnético e sua relação com a voltagem e corrente elétrica. Estas equações proporcionam a base teórica do eletromagnetismo e com seu emprego podem ser resolvidos os problemas de campos eletromagnéticos e de irradiação. São elas: a Lei de Ampère para circuitos, o Teorema de Gauss para campos elétricos, o Teorema de Gauss para campos magnéticos e a Lei de Faraday sobre a força eletromotriz. A teoria de Maxwell facilita o cálculo da propagação eletromagnética.

Para produção das ondas eletromagnéticas utilizadas em Navegação Eletrônica, onde as freqüências são elevadas, usa-se um circuito eletrônico denominado circuito oscilador, ou, simplesmente, oscilador. Assim, pode-se dizer que uma onda eletromagnética é produzida pelas rápidas expansões e contrações de um campo magnético que, por sua vez, é gerado pela energização e desenergização de um circuito eletrônico especialmente projetado, denominado oscilador. Um amplificador é, geralmente, usado para fortalecer a potência de saída do oscilador e uma antena para formar a onda de saída e irradiar a onda eletromagnética no espaço.

(Parte 1 de 7)

Comentários