Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Geankoplis - Procesos De Transporte Y Operaciones Unitarias, Notas de estudo de Engenharia Química

- - -

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 05/04/2008

luiz-scopel-6
luiz-scopel-6 🇧🇷

4.3

(3)

1 documento

Pré-visualização parcial do texto

Baixe Geankoplis - Procesos De Transporte Y Operaciones Unitarias e outras Notas de estudo em PDF para Engenharia Química, somente na Docsity! dA o GL Ja Y operaciones unitarias Contenido Prefacio . . .XIII PARTE 1 PRINCIPIOS FUNDAMENTALES DE PROCESOS DE TRANSPORTE DE MOMENTO LINEAL, DE CALOR Y DE MASA Capitulo 1 Introducción a los principios de ingeniería y sus unidades 1.1 Clasificación de las operaciones unitarias y los procesos de transporte 1.2 El sistema (SI) de unidades fundamentales usado en este texto y otros sistemas de unidades 1.3 Métodos para expresar temperaturas y composiciones 1.4 Leyes de los gases y presión de vapor 1.5 Conservación de la masa y balances de materia 1.6 Unidades de energía y calor 1.7 Conservación de energía y balances de calor 1.8 Métodos matemáticos, gráficos y numéricos Capitulo 2 Principios de transferencia de momento lineal y balances globales 38 2.1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 2 .10 2.11 Introducción 38 Estática de fluidos 3 9 Ecuación general de transporte molecular para transferencia de momento lineal, calor y masa Viscosidad de los fluidos Tipos de flujo de fluidos y número de Reynolds Balance total de masa y ecuación de continuidad Balance global de energía Balance general de momento lineal Balance de momento lineal en el recinto y perfil de velocidades en flujo laminar Ecuaciones de diseño para flujo laminar y turbulento en tuberías Flujo compresible de gases 4 7 52 56 59 6 6 80 9 0 96 115 1 3 3 5 7 1 0 1 3 17 23 2 9 Capítulo 3 Principios de la transferencia de momento lineal y aplicaciones 130 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados Medición del flujo de fluidos Bombas y equipo para manejar gases Agitación y mezclado de fluidos y necesidades de potencia Fluidos no newtonianos Ecuaciones diferenciales de continuidad Ecuación diferencial de transferencia de momento lineal o de movimiento Uso de las ecuaciones diferenciales de movimiento y continuidad Otros métodos para la resolución de ecuaciones diferenciales de movimiento Flujo de capa límite y turbulencia Análisis dimensional de la transferencia de momento lineal Capítulo 4 Principios de transferencia de calor en estado estacionario 2 4 1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 Introducción y mecanismos de la transferencia de calor Transferencia de calor por conducción Conducción a través de sólidos en serie Conducción de estado estacionario y factores de forma Transferencia de calor por convecci6n forzada dentro de tuberias Transferencia de calor por convección forzada en el exterior de diferentes geometrias Transferencia de calor en convección natural Ebullición y condensación Intercambiadores de calor Introducción a la transferencia de calor por radiación Principios avanzados de transferencia de calor por radiación Transferencia de calor en fluidos no newtonianos Casos especiales de coeficientes de transferencia de calor Análisis dimensional en la transferencia de calor Métodos numéricos para la conducción en estado estacionario en dos dimensiones Capítulo 5 Principios de transferencia de calor en estado no estacionario 368 5.1 Deducción de la ecuación básica 368 5.2 Caso simplificado de sistemas con resistencia interna despreciable 3 7 0 5.3 Conducción del calor en estado no estacionario en diversas geometrías 3 7 3 5.4 Métodos numéricos de diferencia finita para conducción en estado no estacionario 390 5.5 Enfriamiento y congelación de alimentos y materiales biológicos 4 0 1 5.6 Ecuación diferencial de cambio de energía 407 5.7 Flujo de capa límite y turbulencia en la transferencia de calor 4 1 3 Capítulo 6 Principios de transferencia de masa 425 6.1 Introducción a la transferencia de masa y difusión 425 6.2 Difusión molecular en gases 430 6.3 Difusión molecular en líquidos 444 130 145 152 1 6 1 174 186 193 199 209 215 228 2 4 1 247 251 263 265 279 285 292 301 3 1 0 316 3 3 3 336 345 3 4 8 Viii Contenido 13.8 Efectos de las variables de proceso en la separación de gases a través de membranas 13.9 Procesos a través de una membrana de ósmosis inversa 13.10 Aplicaciones, equipo y modelos para ósmosis inversa 13.11 Procesos a través de una membrana de ultrafiltración Capitulo 14 Procesos de separación físicos-mecánicos 8 8 4 14.1 Introducción y clasificación de los procesos de separación físico-mecánicos 8 8 4 14.2 Filtración en la separación sólido-líquido 885 14.3 Precipitación y sedimentación en la separación partícula-fluido 9 0 0 14.4 Procesos de separación por centrifugación 9 1 5 14.5 Reducción mecánica de tamaño 9 2 8 APÉNDICES Apéndice A.l Apéndice A.2 Apéndice A.3 Apéndice A.4 Apéndice A.5 Constantes fundamentales y factores de conversión Propiedades físicas del agua Propiedades físicas de compuestos inorgánicos y orgánicos Propiedades fisicas de materiales alimenticios y biológicos Propiedades de tuberías, ductos y tamices 9 3 9 9 4 3 9 5 3 9 7 8 9 8 1 Notación 9 8 4 Índice 9 9 3 Contenido 863 865 871 8 7 5 xi 4. Estudio de las operaciones unitarias. Si el estudiante ya ha tomado cursos de principios de transferencia de momento lineal, de calor y de masa, los capítulos 2, 3 , 4 y 5 pueden omitirse y estudiarse solamente los correspondientes a operaciones unitarias de la parte II en un curso de un semestre o un trimestre. Este plan puede ser útil para ingenieros químicos y otras especialidades. 5. Estudio de transferencia de masa. Para estudiantes de ingeniería química o mecánica que han tomado cursos de transferencia de momento lineal y de calor, así como para los que sólo desean adquirir conocimientos generales de transferencia de masa en un semestre o un trimestre, se recomienda estudiar los capítulos 5 y 8. Los capítulos 7, 9 y 10 pueden cubrirse o no, dependiendo de los requerimientos del estudiante. La comunidad científica ya ha adoptado el sistema de unidades internacional SI (Systéme Internationale d ‘Unités) y el cambio se ha efectuado con gran rapidez. Debido a ello, este libro utiliza el sistema de unidades SI para ecuaciones, problemas de ejemplo y problemas de estudio. Sin embargo, las ecuaciones más importantes del texto se expresan en un sistema doble de unidades, SI e inglés, cuando ambos difieren. Algunos problemas de ejemplo y de estudio también se expresan en unidades inglesas, para aquellos que desean utilizar este sistema. Christie J. Geankoplis PARTE 1 Principios fundamentales de procesos de transporte de momento lineal de calor y de masa CAPÍTULO 1 Introducción a los principios de ingenieria y sus unidades 1.1 CLASIFICACIÓN DE LAS OPERACIONES UNITARIAS Y LOS PROCESOS DE TRANSPORTE C a p . 1 Introducción a los principios de ingeniería y sus unidades 5 y de masa. Estos principios fundamentales se estudian con detalle en los capítulos 1-7 para proporcionar las bases de las operaciones unitarias. Parte 2: Operaciones unitarias. En esta parte del texto se estudian las diversas operaciones unitarias y sus aplicaciones en las áreas de proceso. Existen varios principios elementales de ingeniería, técnicas matemáticas y leyes de física y química que son fundamentales para el estudio de los principios de transferencia de momento lineal, calor y masa y de las operaciones unitarias, Todo ello se repasa en este primer capítulo. Muchos lectores, en especial los ingenieros químicos, agrícolas, civiles y los químicos, probablemente conocerán ya estos principios y técnicas y pueden omitir este capítulo. Los problemas de estudio al final de cada capítulo están distribuidos por secciones y cada una de ellas corresponde al numero de una determinada sección del capítulo. 1.2 EL SISTEMA SI DE UNIDADES FUNDAMENTALES USADO EN ESTE TEXTO Y OTROS SISTEMAS DE UNIDADES Existen tres sistemas de unidades fundamentales empleados actualmente en la ciencia y la ingeniería. El primero y más importante es el sistema SI (Systeme International d’unités), cuyas tres unidades básicas son el metro (m), el kilogramo (kg) y el segundo (s). Los otros son el sistema inglés: pie (ft) - libra (Ib) - segundo (s) o sistemapls (fps); y el sistema centímetro (cm) - gramo (g) - segundo (s), o sistema cgs. En la actualidad se ha adoptado ya el sistema SI de manera oficial para usarse en ingeniería y las ciencias, aunque los sistemas inglés y cgs todavía tienen bastante aceptación. Muchos de los datos químicos y físicos, así como las ecuaciones empíricas, están expresados en estos dos sistemas. Por tanto, el ingeniero no sólo debe conocer a la perfección el sistema SI, sino además poseer cierto grado de familiarización con los otros dos sistemas. 1.2A El sistema de unidades SI Las unidades fundamentales del sistema SI son como sigue: la unidad de longitud es el metro (m); la de tiempo es el segundo (s); la de masa es el kilogramo (kg); la de temperatura es el Kelvin (K); y la de un elemento es el kilogramo mol (kg mol). Las unidades restantes se derivan de estas cantidades. La unidad de fuerza es el newton (N), que se define como 1 newton (N) = 1 kg * m/s* La unidad básica de trabajo, energía o calor es el newton-metro, o joule (J): 1 joule (J) = 1 newton * m (N . m) = 1 kg . m*/s* La potencia se mide en joule/s o watts (W): 1 joule/s (J/s) = 1 watt (W) La unidad de presión es el newton/m* o Pascal (Pa): 1 newton/m* (N/m*) = 1 Pascal (Pa) 6 1.2 El Sistema SI de unidades fundamentales usado en este texto y otros sistemas de unrdades La presión en atmósferas (atm) no es una unidad estándar del sistema SI, pero se usa en la etapa de transición. La aceleración de la gravedad se define como: 1 g = 9.80665 mIs Algunos de los prefijos para múltiplos de las unidades básicas son: giga (G) = lo’, mega (M) = 106, kilo (k) =103, centi (c) = lo-*, mili (m) = 10V3, micro (p) = lOA y nano (n) = lo-‘. El prefijo c es poco usual. Las temperaturas se definen en Kelvins (K), como unidad estándar del sistema SI. Sin embargo, en la práctica se usa mucho la escala Celsius (“C) que se define como t °C = T(K) - 273.15 Nótese que 1 °C = 1 K cuando se trata de diferencias de temperatura, At”C=ATK La unidad estándar de tiempo preferible es el segundo (s), pero también puede expresarse en unidades no decimales de minutos (min), horas (h) o días (d). 1.2B El sistema de unidades cgs El sistema cgs se relaciona con el sistema SI como sigue: 1 g masa (g) = 1 x 10w3 kg masa (kg) 1 cm = 1 x 10V2 m 1 dina = 1 g * cms = 1 x 10m5 newton (N) 1 erg = 1 dina . cm = 1 x lOe7 joule (J) . La aceleración estándar de la gravedad es g = 980.665 cmIs 1.2C El sistema inglés de unidades (pls) La equivalencia entre el sistema inglés y el SI es como sigue: 1 Ib masa (Ib,) = 0.45359 kg 1 pie = 0.30480 m 1 Ib fuerza (lbr) = 4.4482 newtons (N) 1 pie . lbr = 1.35582 newton . m (N * m) = 1.35582 joules (J) Cap. 1 Introducción a los principios de ingeniería y sus unidades 1 lb/pulg2 abs = 6.89476 x lo3 newton/m2 (N/m2) 1.8 ° F = 1 K = 1 ° C (centígrado o Celsius) g = 32.174 piels El factor de proporcionalidad para la ley de Newton es gc = 32.174 pie . Ib,/ lbf * s2 El factor g, en unidades SI y cgs es 1.0 y se omite. En el apéndice A. 1 se incluyen tablas de factores de conversión para los tres sistemas, además, en varias secciones de este texto aparecen ejemplos del uso de estas relaciones. Este texto usa el sistema SI como conjunto primario de unidades para ecuaciones, problemas de ejemplo y de estudio. Sin embargo, las ecuaciones importantes que se deducen en el texto se expresan en dos sistemas de unidades, SI e ingles, cuando las ecuaciones difieren. Algunos problemas de ejemplo y de estudio también usan unidades inglesas. En algunos casos, las etapas intermedias y las respuestas de los problemas de ejemplo también se expresan en unidades del sistema inglés. 1.2D Ecuaciones dimensionalmente homogéneas y con unidades congruentes Una ecuación dimensionalmente homogénea es aquella en la cual todos los términos tienen el mismo tipo de unidades. Estas unidades pueden ser las básicas o derivadas (por ejemplo, kg/s2 . m o Pa). Esta clase de ecuaciones puede usarse con cualquier sistema de unidades siempre y cuando se utilicen idénticas unidades básicas o derivadas en toda la ecuación. (No se requieren factores de conversión cuando se emplean unidades congruentes.) El lector debe ser cuidadoso en el uso de ecuaciones, comprobando siempre su homogeneidad dimensional. Para proceder así, primero se selecciona un sistema de unidades (SI, inglés, etc.). Después, se incluyen las unidades de cada término y se comprueba su equivalencia luego de cancelar las que sean iguales en cada término 1.3 MÉTODOS PARA EXPRESAR TEMPERATURAS Y COMPOSICIONES 1.3A Temperatura Existen dos escalas de temperatura comunes en las industrias química y biológica. Ellas son grados Fahrenheit (OF) y Celsius (°C). Es muy frecuente que se necesite obtener valores equivalentes de una escala a la otra. Ambas usan el punto de congelación y el punto de ebullición del agua a 1 atmósfera de presión como patrones. Las temperaturas también se expresan en grados K absolutos (sistema SI) o grados Rankine (°R) en vez de °C o °F. La tabla 1.3-1 muestra las equivalencias de estas cuatro escalas de temperaturas. La diferencia entre el punto de ebullición del agua y el punto de fusión del hielo a 1 atm es 100 °C o 180 °F. Por lo tanto, un cambio de 1.8 |°F es igual a un cambio de 1 °C. En general, el valor de -273.15 ° C se redondea a -273.2 ° C y el de -459.7 °F a -460 °F. Para convertir de una escala a otra pueden usarse las siguientes ecuaciones: 10 1.4 Leyes de los gases y presión de vapor 1.4 LEYES DE LOS GASES Y PRESIÓN DE VAPOR 1.4A Presión Existen muchas formas para expresar la presión ejercida por un fluido o un sistema . Una presión absoluta de 1.00 atm es equivalente a 760 mm de Hg a 0 “C, 29.921 pulg de Hg, 0.760 m de Hg, 14.696 Ib fuerza por pulgada cuadrada (lb/pulg2 abs), o 33.90 pies de agua a 4 “C. La presión manométrica es la presión por encima de la presión absoluta. De esta manera, una presión manométrica de 2 1.5 Ib por pulgada cuadrada (Zb/puZg2 ) es igual a 2 1.5 + 14.7 (redondeando) o 36.2 lb/pulg2 abs. En unidades SI, 1 lb/pulg2 abs = 6.89476 x lo3 pascales (Pa) = 6.89476 x lo3 newtons/m’. Además, 1 atm = 1.01325 x lo5 Pa. En algunos casos, en especial cuando se trata de evaporación, puede expresarse la presión como pulgadas de vacío de mercurio. Esto significa la presión en pulgadas de mercurio medida “por debajo” de la presión barométrica absoluta. Por ejemplo, una lectura de 25.4 pulg de vacío de Hg es 29.92 - 25.4, o 4.52 pulg de Hg de presión ‘absoluta. (Las conversiones de unidades de presión pueden buscarse en el apéndice A. 1.) 1.4B Ley de los gases ideales Un gas ideal se define como aquel que obedece a leyes simples. Además, las moléculas gaseosas de un gas ideal se consideran como esferas rígidas que no ocupan volumen por sí mismas y que no se afectan mutuamente. Ningún gas real obedece estas leyes con exactitud, pero a temperaturas y presiones normales de pocas atmósferas, la ley de los gases ideales proporciona respuestas con bastante aproximación. Por consiguiente, esta ley tiene una precisión suficiente para los cálculos de ingeniería. La ley de los gases ideales de Boyle indica que el volumen de un gas es directamente proporcional a la temperatura absoluta e inversamente proporcional a la presión absoluta. Esto se expresa como pV = nRT (1.4-1) donde p es la presión absoluta en N/m2, Ves el volumen del gas en m3, n es el número de kg mol de gas, T es la temperatura absoluta en K, y R es la constante de la ley de los gases y tiene un valor de 8314.3 kg * m2/kg mol . s2 * K. Cuando el volumen se expresa en pie3, n en Ib mol y Ten °R, el valor de R es 0.7302 pie3 atm/lb mol T = K, R = 82.057 cm3 * °R. Para unidades cgs (véase el apéndice A. l), V = cm3, - atm/g mol * K y n = g mol. Para comparar diferentes cantidades de gases, las condiciones estándar de temperatura y presión (abreviadas TPE o CE) se definen arbitrariamente como 101.325 kPa (1.0 atm) abs y 273.15 K (0 “C). En estas condiciones, los volúmenes son volumen de 1.0 kg mol (CE) = 22.414 m3 volumen de 1.0 g mol (CE) = 22.414 litros = 22 414 cm3 volumen de 1.0 Ib mol (CE) = 359.05 pies3 Cap. 1 Introducción a los principios de ingeniería y sus unidades l l EJEMPLO 1.4-I. Constante de la ley de los gases Calcule el valor de la constante de la ley de los gases, R, cuando la presión está en Ib/pulg2 abs, las moles en Ib moles, el volumen en pie3 y la temperatura en “R. Repita para unidades SI. Solución: En condiciones estándar, p = 14.7 lb/pulg2 abs, V = 359 pies3 y T = 460 + 32 = 492 °R (273.15 K). Sustituyendo en la ecuación (1.4-l) n = 1 .O Ib mol y despejando R, R = E = (14.7 lb/pulg2 abs)(359 pie3) = 10.73 pie3. lb/pulg2 abs nT (1.0 Ib mo1)(492 °R) Ib m o l °R R= c = (1.01325 x lo5 Pa)(22.414 m3) = 8314 m3. Pa nT (1.0 kg mo1)(273.15 K) kg mol .K De la ecuación (1.4-l) puede obtenerse una relación muy útil para n moles de gas en condiciones ~1, VI, Tl y para condiciones p2, V2, T2. Sustituyendo en la ecuación (1.4-l), p2V2 = nRT2 Al combinar se obtiene & - I; P25 - q 1.4C Mezclas de gases ideales (1.4-2) La ley de Dalton para mezclas de gases ideales enuncia que la presión total de una mezcla de gases es igual a la suma de las presiones parciales individuales: P = PA f PB + PC + . . . (1.4-3) donde P es la presión total y PA , PB , pc , . . . son las presiones parciales de los componentes A, B, C , . . . de la mezcla. Puesto que el número de moles de un componente es proporcional a su presión parcial, la fracción mol de un componente es .,dL A P Pa+Pp+Pc+ ... (1.4-4) 1 2 1.4 Leyes de los gases y presión de vapor La fracción volumen es igual a la fracción mol. Las mezclas de gases casi siempre se expresan en términos de fracciones mol y no de fracciones en peso. Para cálculos de ingeniería, la ley de Dalton tiene la suficiente precisión para usarla en mezclas reales a presiones totales de pocas atmósferas. EJEMPLO 1.4-2. Composición de una mezcla gaseosa Una mezcla gaseosa contiene los siguientes componentes y presiones parciales: COZ, 75 mm de Hg; CO, 50 mm de Hg; N2, 595 mm de Hg; 02, 26 mm de Hg. Calcule la presión total y la composición en fracciones mol. Solución: Sustituyendo en la ecuación (1.4-3), P = PA + PB + PC + PD = 75 + 50 + 595 + 26 = 746 mm Hg La fracción mol de COZ se obtiene mediante la ecuación (1.4-4) XA (CO,) &+.lol P De la misma manera, las fracciones mol de CO, N2 y O2 son 0.067, 0.797 y 0.035, respectivamente. 1.4D Presión de vapor y punto de ebullición de los líquidos Cuando un líquido se introduce en un recipiente cerrado, las moléculas de dicho líquido se evaporan en el espacio por encima de él y lo llenan por completo. Después de un tiempo se establece un equilibrio. Este vapor ejerce una presión al igual que un gas y a esta presión se le puede llamar presión de vapor del líquido. El valor de la presión de vapor es independiente de la cantidad de líquido en el recipiente siempre y cuando haya algo de líquido presente. Si un gas inerte como el aire también está presente en el espacio del vapor, su efecto sobre la presión de vapor es muy bajo. En general, el efecto de la presión total sobre la presión de vapor puede considerarse como despreciable para presiones de unas cuantas atmósferas. La presión de vapor de un líquido aumenta notablemente al elevarse la temperatura. Por ejem- plo, en los datos del agua del apéndice A.2, se ve que la presión de vapor a 50 ° C es 12.333 kPa (92.5 1 mm de Hg). A 100 °C, la presión de vapor aumenta en alto grado a un valor de 101.325 kPa (760 mm de Hg). El punto de ebullición de un líquido se define como la temperatura a la cual la presión de vapor del líquido es igual a la presión total. Por lo tanto, si la presión atmosférica total es de 760 mm de Hg, el agua hierve a 100 “C. En la cumbre de una montana alta, donde la presión es considerablemente más baja, el agua hierve a temperaturas inferiores a 100 °C. Una gráfica de la presión de vapor PA de un líquido en función de la temperatura no produce una linea recta sino una curva. Sm embargo, para intervalos de temperatura moderados, una gráfica de log PA en función de l/T es casi una línea recta, cuya expresión corresponde a @PA= donde m es la pendiente, b es una constante para el líquido A y T es la temperatura en K. Cap. 1 Introducción a los principios de ingeniería y sus unidades 1 5 Al resolver, 929.2 = 877.9 + 51.3 = 929.2 En el ejemplo 1.5-1 solo intervino un proceso. Muchas veces se presentan varios procesos en serie, en cuyo caso puede llevarse a cabo un balance por separado de cada proceso y un balance para la totalidad del proceso general. 1.5C Balance de materia y recirculación En algunas ocasiones se presentan casos en los que hay una recirculación o retroalimentación de parte del producto a la corriente de alimentación. Por ejemplo, en una planta de tratamiento de aguas, parte de los lodos activados de un tanque de sedimentación se recirculan al tanque de aereación donde se trata el líquido. En algunas operaciones de secado de alimentos, la humedad del aire de entrada se controla recirculando parte del aire húmedo y caliente que sale del secador. En las reacciones químicas, el material que no reaccionó en el reactor puede separarse del producto final y volver a alimentarse al reactor. EJEMPLO 1.5-2. Cristalización y recirculación de KV03 En un proceso que produce KNOs, el evaporador se alimenta con 1000 kg/h de una solu- ción que contiene 20% de KNO, de sólidos en peso y se concentra a 422 K para obtener una solución de KNOs al 50% de sólidos en peso. Esta solución se alimenta a un cristalizador a 311 K, donde se obtienen cristales de KNOs al 96% de sólidos en peso. La solución saturada que contiene 37.5% de KN03 de sólidos en peso se recircula al evaporador. Calcule la cantidad de corriente de recirculación R en kg/h y la corriente de salida de cristales P en kg/h. Solución: En la figura 1.5-2 se muestra el diagrama de flujo. Como base del cálculo usaremos 1000 kg/h de alimentación original. No se verifican reacciones químicas. Podemos efectuar un balance general de la totalidad del proceso para el KN03 y obtener directamente el valor de P, lOOO(O.20) = W(0) + P(0.96) (1.5-6) P = 208.3 kg cristales/h Para calcular la corriente de recirculación, podemos llevar a cabo un balance con respecto al evaporador o al cristalizador. Efectuando el balance en el cristalizador sólo existen dos incógnitas, S y R y se obtiene que S = R+ 208.3 (1.5-7) Para el balance de KN03 en el cristalizador, S(O.50) = R(0.375) + 208.3(0.96) (1.5-8) Sustituyendo el valor de S de la ecuación (1.5-7) en la (1.5-8) y despejando: R = 766.6 kg, recirculando/h y S = 974.9 kg/h. 16 1.5 Conservación de la masa y balances de materia t Agua, Wkgh I Alim. 1000 kg/h Evaporador Skg/h Cristalizador 20% KNo3 . ' 4 2 2 K 5O%KNO3 ' 311 K Recirc. R kg/h Cristales, P kg/h 37.5% KNo3 -a/,HzO b FIGURA 1.5-2. Diagrama de flujo para el proceso del ejemplo 1.5-2. 1.5D Balances de materia y reacciones químicas En muchos casos, los materiales que entran a un proceso toman parte en una reacción química, por lo que los materiales de salida son diferentes de los de entrada. En estos casos suele ser conveniente llevar a cabo un balance molar y no de peso para cada componente individual, tal como kg mol de H2 o kg átomo de H, kg mol de ion CO3-, kg mol de CaC03, kg átomo de Na+, kg mol de N2, etcétera. Por ejemplo, en la combustión de CH4 con aire, se pueden efectuar balances de kg mol de HZ, C, 02 0 N2. EJEMPLO 1.5-3. Combustión de un gas combustible Un gas combustible que contiene 3.1 mol % de Hz, 27.2% CO, 5.6% de COZ, 0.5% de 02 y 63.6% de N2, se quema con 20% de exceso de aire (esto es, aire sobrante con respecto al que es necesario para una combustión completa hasta CO2 y H20). La combustión del CO sólo se completa al 98%. Para 100 kg de gas combustible, calcule los moles de cada componente en el gas de salida. Solución: Primero se traza el diagrama de flujo del proceso (Fig. 1.5-3). En el diagrama se muestran los componentes del gas de salida. Si A son los moles de aire y F los moles de gas de combustión, el diagrama queda completo. Las reacciones químicas son co+~02+co2 (1.5-9) H, + + O2 + H,O (1.5-10) La contabilidad del total de moles de 02 en el gas combustible es: moles de 02 en el gas combustible = (t) 27.2 (CO) + 5.6 (COZ) + 0.5 (02) = moles de 02 Para que todo el Hz se transforme en H20, la ecuación (1.5-10) indica que se necesita + mol de 02 por 1 mol de Hz, o 3.1(3) = 1.55 moles totales de 02. Con base en la ecuación (1.5-g), para la combustión completa del CO se necesitan 27.2 ($) = 13.6 moles de 02. Por lo tanto, la cantidad teórica de 02 que se debe usar es Cap. 1 Introducción a los principios de ingeniería y sus unidades 17 A kg mol de aire 100 kg mol de gas combustible 3.1 % Hz 27.2 % CO 5.6 % CO2 0.5 % 02 63.6 % N2 100.0 F kg mol de gas de combustión Quemador b Hz0 c o co2 02 N2 FIGURA 1.5-3. Diagrama de flujo del proceso para el ejemplo 1.5-3. moles de O2 teóricamente necesarios = 1.55 + 13.6 - 0.5 (en el gas combustible) = 14.65 moles de 02 Para un exceso de 20% se añaden 1.2 (14.65) o 17.58 moles de 02. Puesto que el aire contiene 79 moles % de N2, la cantidad que se añade de éste es (79/21) (17.58) o 66.1 moles de N2. Para calcular los moles en el gas de combustión final, todo el HZ produce HzO; esto es, 3.1 moles de H20. En el caso del CO, hay un 2.0% que no reacciona. Por consiguiente, quedarán sin quemarse 0.02 (27.2) o 0.54 mol de CO. El balance total de carbono es el siguiente: moles de entrada de C = 27.2 + 5.6 = 32.8 moles de C. En el gas de combustión de salida, 0.54 mol estará como CO y el resto, 32.8 - 0.54 = 32.26 moles como COZ. Para calcular los moles de salida de 02, se procede a un balance general de 02. O2 de entrada = 19.7 (en el gas combustible) + 17.58 (en el aire) = 37.28 moles de 02 O2 de salida = (3.1/2) (en el agua) + (0.54/2) ( en el CO) = 32.26 (en el COZ) + 02 libre Igualando las entradas y salidas de 02, el O2 libre que queda = 3.2 moles de 02. Para el balance de N2, la salida = 63.6 (en el gas combustible) + 66.1 (ene1 aire), o 129.70 moles de N2. El gas de combustión de salida contiene 3.10 moles de H20, 0.54 mol de CO, 32.26 moles de COZ, 3.20 moles de O2 y 129.7 moles de N2. En las reacciones químicas con diversos reactivos, el reactivo limitante se define como el compuesto que está presente en cantidad de menor que la necesaria para que reaccione estequiométricamente con los otros reactivos, De esta manera, el porcentaje de terminación de una reacción es la cantidad de reactivo limitante que se ha transformado, dividida entre la cantidad presente al principio, multiplicada por 100. 1.6 UNIDADES DE ENERGÍA Y CALOR 1.6A Joules, Calorías y Btus Los balances de energía de un proceso se elaboran de manera similar a los correspondientes para procesos químicos y biológicos. Casi siempre una gran parte de la energía que entra a un sistema 20 1.6 Unidades de energía y calor EJEMPLO 1.64. Calentamiento de Nt gaseoso Una cierta cantidad de Nz gaseoso a 1 atm de presión se calienta en un intercambiador de calor. Calcule la cantidad de calor necesario expresado en J, para calentar 3.0 g mol de N2 en los siguientes intervalos de temperatura: a) 298-673 K (25-400 °C) b) 298-1123 K (25-850 “C) c) 673-1123 K (400-850 “C) Solución: Para el inciso a), la tabla 1.6-1 muestra los valores de cpm a 1 atm de presión o menos, que pueden usarse hasta varias atmósferas. Para N2 a 673 K, cpm = 29.68 kJ/ kg mol * K o 29.68 J/g mol * K. Ésta es la capacidad calorífica media para el intervalo 298-673 K. calor necesario = M g mol c JPm g mol . K G-TK (1.6-4) Sustituyendo los valores conocidos, calor necesario = (3.0) (29.68) (673 - 298) = 33390 J Para el inciso b), el valor de cpm a 1123 K (obtenido por interpolación lineal entre 1073 y 1173 K) es 31.00 J/g mol * K. calor necesario = 3.0 (3 1.00) (ll23 - 298) = 76725 J Para el inciso c), no existe capacidad de calor media para el intervalo 673-l 123 K. Sin embargo, se puede utilizar el calor requerido para calentar el gas de 298 a 673 K en el inciso a) y restarlo del inciso b), lo cual incluye que el calor pase de 298 a 673 K, más 673 hasta 1123 K. calor necesario (673 - 1123 K) = calor necesario (298 - 1123 K) - calor necesario (298-673) (1.6-5) Sustituyendo los valores apropiados en la ecuación (1.6-5), calor necesario = 76725 - 33390 = 43335 J Al calentar una mezcla gaseosa, el calor total requerido se determina calculando primero el calor necesario para cada componente individual y sumando los resultados. Las capacidades caloríficas de sólidos y líquidos también dependen de la temperatura y son independientes de la presión. Los valores pueden encontrarse en los apéndices A.2, Propiedades físicas del agua; A.3, Propiedades físicas de compuestos inorgánicos y orgánicos; y A.4, Propie- dades físicas de alimentos y materiales biológicos, En las referencias (Pl) pueden obtenerse datos adicionales. Cap. 1 Introducción a los principios de ingeniería y sus unidades 2 1 EJEMPLO 1.6-2. Calentamiento de leche En un intercambiador de calor se calienta leche entera de vaca (4536 kg/h) de 4.4 °C a 54.4 °C, usando agua caliente. ¿Cuánto calor se necesita? Solución: En el apéndice A.4 se ve que la capacidad calorífica de la leche entera de vaca es 3.85 kJ/kg . K. La elevación de la temperatura es AT = (54.4 - 4.4) °C = 50 K. calor necesario = (4536 kg/h) (3.85 kJ/kg . K) (1/3600 h/s) (50 K) = 242.5 kW La entalpía, H, de una sustancia en J/kg representa la suma de la energía interna más el término presión-volumen. Cuando no hay reacción y se trata de un proceso a presión constante y un cambio de temperatura, la variación de calor que se calcula con la ecuación (1.6-4) es la diferencia de entalpía, AH, de la sustancia, con respecto a la temperatura dada o punto base. En otras unidades, H = btu/lb, o cal/g. 1.6C Calor latente y tablas de vapor Cuando una sustancia cambia de fase se producen cambios de calor relativamente considerables a temperatura constante. Por ejemplo, el hielo a 0 °C y 1 atm de presión puede absorber 6014.4 kJ/ kg mol. A este cambio de entalpía se le llama calor latente de fusión. Los valores similares para otros compuestos pueden encontrarse en manuales (Pl, Wl). Cuando una fase líquida pasa a fase vapor con su presión de vapor a temperatura constante, se debe agregar cierta cantidad de calor que recibe el nombre de calor latente de vaporización. Diversos manuales contienen valores y tabulaciones de los calores latentes de vaporización. Para el agua a 25 °C y una presión de 23.75 mm de Hg, el calor latente es 44 020 kJ/kg mol. Por consiguiente, el efecto de la presión puede despreciarse para cálculos de ingeniería. Sin embargo, el efecto de la temperatura sobre el calor latente del agua es bastante considerable; además, el efecto de la presión sobre la capacidad calorífica del agua líquida es pequeño y puede despreciarse. Puesto que el agua es una sustancia muy común, sus propiedades termodinámicas se han recopilado en tablas de vapor que aparecen en el apéndice A.2 en unidades SI y del sistema inglés. EJEMPLO 1.6-3. Uso de las tablas de vapor Determine los cambios de entalpía (esto es, las cantidades de calor que deben añadirse) en cada uno de los siguientes casos en unidades SI y del sistema inglés. a) Calentamiento de 1 kg (Ib,) de agua: de 21.11 °C (70 °F) a 60 °C (140 °F) a 101.325 kPa (latm) de presión. b) Calentamiento de 1 kg (Ib,) de agua: 21. ll °C (70 “F) a 115.6 ° C (240 “F) y vaporización a 172.2 kPa (24.97 lb/pulg2 abs). c) Vaporización de 1 kg (Ib,) de agua a 115.6 ° C (240 °F) y 172.2 kPa (24.97 Ib/ pulg2 abs). Solución: En el inciso a), el efecto de la presión sobre la entalpía del agua líquida es despreciable. Del apéndice A.2, Ha 21.11 °C = 88.60 kJ/kg o a 70 ° F = 38.09 btu/lb, Ha 60 °C = 251.13 kJ/kg o a 140 °F = 107.96 btu/lb, 22 1.6 Unidades de energía y calar cambio de H = AH = 251.13 - 88.60 = 162.53 kJ/kg = 107.96 - 38.09 = 69.87 btu/lb, En el inciso b), la entalpía a 115.6 °C (240 “F) y 172.2 kPa (24.97 lb/pulg2 abs) de vapor saturado es 2699.9 kJ/kg o 1160.7 btu/lb,, cambio de H = AH = 2699.9 - 88.60 = 2611.3 kJ/kg = 1160.7 - 38.09 = 1122.6 btu/lb, El calor latente del agua a 115.6 °C (240 °F) en el inciso c) es 2699.9 - 484.9 = 2215.0 kJ/kg 1160.7 - 208.44 = 952.26 btu/lb, 1.6D Calor de reacción Cuando se verifican reacciones químicas, éstas siempre van acompañadas de efectos caloríficos. Al conjunto de estos fenómenos de cambio de energía se le llama termoquímica. Por ejemplo, cuando se neutraliza HCl con NaOH se desprende calor y la reacción es exotérmica. En las reacciones endotérmicas se absorbe calor. Este calor de reacción depende de la naturaleza química de cada reactivo y cada producto y de sus estados físicos. Para poder comparar valores, el calor de reacción estándar, AH°, se define como la variación de entalpía cuando 1 kg mol reacciona a una presión de 101.325 kPa a temperatura de 298 K (25 “C). Por ejemplo, el valor de AH° en la reacción H,(g) + + o,(g) + HzO(~) (1.6-6) es -285.840 x 103 kJ/kg mol o -68.3 17 kcal/g mol. La reacción es exotérmica y el valor es negativo, pues se pierde entalpía. En este caso, el H2 gaseoso reacciona con el 02 gaseoso para producir agua líquida, todo a 298 K (25 “C). Dependiendo del tipo de reacción, AH° recibe nombres especiales. Cuando se forma un producto a partir de sus elementos, como en la ecuación (1.6-6), a AH° se le llama calor de fir- mación del agua, AHHf. A la combustión del CH4 formando CO2 y H20, se le llama calor de combustión, AH,“. (En el apéndice A.3 se incluyen valores de AH: .) EJEMPLO 1.6-4. Combustión de carbono Un total de 10.0 g mol de grafito se queman en un calorímetro a 298 K i 1 atm. La combustión es incompleta y el 90% del C se transforma en CO2 y el 10% en CO. iCuál es la variación total de entalpía en kJ y kcal? Solución: En el apéndice A.3 se determina que AH: para el C al transformarse en CO2 es -393.513 x 10 kJ/kg mol o -94.0518 kcal/g mol, y para la conversión en CO es -110.523 x lo3 kg/kg mol o -26.4157 kcal/g mol. Puesto que se forman 9 moles de CO2 y 1 mol de CO, Cap. 1 Introducción a los principios de ingeniería y sus unidades 25 CJ calor añadido 2000 kgih líquido 30 “C 70 “C W kg/h agua 85 “C -95 “C FIGURA 1.7-1. Diagrama de jlujo del proceso para el ejemplo 1.7-l. Solución: Es conveniente usar el estado normal de referencia a 298 K (25 “C) como base para el cálculo de las diversas entalpías. De acuerdo con la ecuación (1.7-l), los términos de la expresión son los siguientes: Términos de entrada. %& de las entalpías de las dos corrientes con respecto a 298 K (25 “C) (nótese que At = 30 - 25 “C = 5 “C = 5 K): H (líquido) = (2000 kg/h) (4.06 kJ/kg . K) (5 K) = 4.060 lo4 kJ/h H (agua) = W(4.21) (95 - 25) = 2.947 x lo2 W kJ/h V’= kg/h) (-A@w) = 0 (puesto que no hay reacción química) q = 0 (puesto que no hay adición o pérdida de calor) Términos de salida. xHp de las dos corrientes con respecto a 298 K (25 OC): H(líquido) = 2000(4.06) (70 - 25) = 3.65 x lo5 kJ/h HGwa) = W(4.21) (85 - 25) = 2.526 x lo2 W kJ/h Igualando entradas y salidas en la ecuación (1.7-1) y despejando W, 4.060 x lo4 + 2.947 x lo2 W = 3.654 x lo5 + 2.526 x lo2 W W = 7720 kgih de flujo de agua La cantidad de calor que se ha agregado al medio de fermentación es simplemente la diferencia de las entalpías de los líquidos de salida y entrada: H (líquido de salida) : H (líquido de entrada) = 3.654 x lo5 - 4.060 x lo4 = 3.248 x lo5 kJ/h (90.25 kW) 26 1.1 Conservación de energía y balances de calor Obsérvese en este ejemplo que, puesto que se supuso que las capacidades caloríficas son constantes, se podría haber escrito un balance más simple como éste: calor que gana el líquido = calor que pierde el agua 2000(4.06)(70 - 30) = ,W(4.21)(95 - 85) Entonces, al resolver la expresión, W= 7720 kg/h. Este balance simple produce buenos resultados cuando cp es constante; sin embargo, cuando el valor varía con la temperatura y el material es un gas, sólo se dispone de valores de cpm entre 298 K (25 “C) y t K y el método simple no puede usarse sin obtener nuevos valores de cpm a diversos intervalos de temperatura. EJEMPLO 1.7-2 Balances de calor y de materia en una combustión El gas de desperdicio de un proceso de 1000 g mol/b de CO a 473 K se quema a 1 atm de presión en un horno usando aire a 373 K. La combustión es completa y se usa 90% de exceso de aire. El gas de combustión de salida está a 1273 K. Calcule el calor extraído en el horno. Solución: Primero se traza el diagrama de flujo del proceso en la figura 1.7-2 y después se procede a hacer un balance de materia: co(g)+ +o,(g)+co2(g) MA7 = -282 x lo3 kJ/kg mol (del apéndice A.3) moles CO = 1000 g mol/h = moles CO:! = 1.00 kg mol/h moles de O2 teóricamente necesarias = f(l.OO) = 0.500 kg mol/h moles de O2 que en realidad se añaden = 0.500(1.9) = 0.950 kg molih 0.79 moles de N2 añadido = 0.950 m= 3.570 kg mol /h 413 K A g mol/h aire 373 K Horno combusti6n 1 2 7 3 K Calor extraído (-q) v FIGURA 1 .Í’-2. Diagrama de jlujo del proceso del ejemplo 1.7-2. cup. 1 Introducción a los principios de ingeniería y sus unidades 27 aireañadido = 0.950 + 3.570 = 4.520 kg mol/h = A O2 en el gas de combustión de salida = añadido - usado = 0.950 - 0.500 = 0.450 kg mol/h CO2 en el gas de combustión de salida = 1.00 kg mol/h N2 en el gas de combustión de salida = 3.570 kg mol/h Para el balance de calor con respecto al estado normal a 298 K, se usa la ecuación (1.7-1) . Términos de entrada H(C0) = l.OO(c,,)(473 - 298) = 1.00(29.38)(473 - 298) = 5142 kJ/h (El valor de 29.38 kJ/kg mol . K para cpm del CO entre 298 y 473 K se obtiene de la tabla 1.6-1.) H(aire) = 4.520(~,,)(373 - 298) = 4.520(29.29)(373 - 298) = 9929 kJ/h q = calor añadido, kJ/h (Esto dará aquí un valor negativo, indicativo de que se extrae calor). -AH& = - (-282.989 x lo3 kJ/kg mol)(l.OO kg mol/h) = 282 990 kJ/h Términos de salida H(CO*) = l.OO(c&( 1273 - 298) = 1.00(49.91)(1273 - 298) = 48660 kJ/h H(02) = 0.450(~,,)(1273 - 298) = 0.450(33.25)(1273 - 298) = 14590 kJ/h H(N2) = 3.570(&(1273 - 298) = 3.570(31.43)(1273 - 298) = 109400 kJ/h Igualando entradas y salidas y despejando q, 5142 + 9929 + q + 282990 = 48660 + 14590 + 109400 q = -125411 kJ/h Por lo tanto, se extrae calor: -34837 W. Con mucha frecuencia, cuando se verifican reacciones químicas en el proceso y las capacidades caloríficas varían con la temperatura, la solución del problema puede obtenerse por aproximaciones sucesivas si se desconoce la temperatura final. 30 1.8 Métodos matemáticos, gráficos y numéricos AI A2 -43 -44 AS x=6 FIGURA 1.8-t. Integración gráfica de f(x) &x=a 1.8B Integración numérica y regla de Simpson A menudo se desea o se necesita efectuar una integración numérica calculando el valor de una integral definida a partir de un conjunto de valores numéricos del integrandof(x). Desde luego, esto puede hacerse gráficamente, pero si ‘se tiene una gran cantidad de datos, es conveniente disponer de métodos numéricos adecuados para la computadora digital. La integral que se va a evaluar es ( 1 . 8 - 2 ) donde el intervalo es b - a. El método numérico que más se usa es la regla parabólica llamada regla de Simpson. Este método divide el intervalo total b - a en un número par de subintervalos m, donde b - am=- h (1.8-3) El valor de h, una constante, es el espaciamiento que se usa en x. Por tanto, aproximando f (x) por medio de una parábola en cada subintervalo, la regla de Simpson es x=b +w2 +.h +fe +~.~+fm-2>+fm] (1.8-4) donde fo es el valor de f (x) en x = a, fr el valor de f (x) en x = x1, . . . . fm el valor de f (x) en x = b. El lector deberá. advertir que m debe ser un número par y los incrementos deben estar igualmente espaciados. Este método es muy adecuado para computadoras digitales. Cap. 1 Introducción a los principios de ingeniería y sus unidades 3 1 PROBLXMAS 1.2-1. Temperatura de un proceso quimico. Se determina que la temperatura de un proceso químico es 353.2 K. iCuál es la temperatura en “F, “C y “R? Respuesta: 176 “F, 80 “C, 636 “R 1.2-2. Temperaturapara elproceso de ahumado de carne. En el proceso de ahumado de carne para salchicha, aquélla llega a alcanzar una temperatura de 155 ‘F. Calcule esta temperatura en “C, K y “R. 1.3-1. Peso molecular del aire. En la mayoría de los cálculos de ingeniería se supone que el aire está constituido por 2 1 mol % de oxígeno y 79 mol % de nitrógeno. Calcule el peso molecular promedio. Respuesta: 28.9 g masa/g mol, Ib masa/lb mol o kg masa/kg mol. 1.3-2. Oxidación de CO y unidades molares. Una cierta cantidad de CO se oxida con O2 para formar COZ. ¿Cuántos kilogramos de COZ se obtendrán con 56 kg de CO? Calcule además los kilogramos de 0, teóricamente necesarios para esta reacción, (Sugerencia: Escriba primero la ecuación química balanceada para obtener las moles de O2 necesarias para 1.0 kg mol de CO. Después calcule los kilogramos mol de CO en 56 kg de este compuesto.) Respuesta: 88.0 kg COZ, 32.0 kg O2 1.3-3. Composición de una mezcla gaseosa. Una mezcla gaseosa contiene 20 g de N2, 83 g de 02 y 45 g de COZ. Calcule la composición en fracciones mol y el peso molecular promedio de la mezcla. Respuesta: Peso molecular prom. = 34.1 g masa/g mol, 34.1 kg masaikg mol 1.3-4. Composición de una solución de proteina. Una solución líquida contiene 1.15% en peso de una proteína, 0.27% en peso de KCl y el resto es agua. El peso molecular promedio de la proteína por permeación de gel es 525 000 g masa/g mol. Calcule las fracciones mol de los componentes en la solución. 1.3-5. Concentración de una solución de NaCL Una solución acuosa de NaCl tiene 24% en peso de esta sal y su densidad es 1.178 g/cm3 a 25 “C. Calcule lo siguiente: a) Fracciones mol del NaCl y del agua. b) Concentración del NaCl en g mol/l, lb,/pie3, lb,/gal y kg/m3. 1.4-1. Conversión de mediciones de presión en un secado por congelación. En la medición experimental del secado por congelación de carne de res, la cámara se mantiene a presión absoluta de 2.4 mm de Hg. Convierta esta presión a atm, pulg de agua a 4 “C, Pm de Hg y Pa. (Sugerencia: Vea el apéndice A.l para los factores de conversión.) Respuesta: 3.16 x lOe3 atm, 1.286 pulg H20, 2400 mm de Hg, 320 Pa 1.4-2. Compresión y enfriamiento de nitrógeno gaseoso. Un volumen de 65.0 pie3 de N2 gaseoso 90 “ F y 29.0 lb/pulg2 se comprime a 75 lb/pulg2 y se enfría a 65 OF. Calcule el volumen final en pie3 y la densidad final en lb,/pie3. [Sugerencia: Asegúrese de convertir primero las presiones a lb/pulg2 abs y después a atm. Sustituya las condiciones originales en la ecuación (1.4-l) y obtenga n en libras mol.] 1.4-3. Composición y volumen de gases. Una mezcla de 0.13 g mol de NHs, 1.27 g mol de N2 y 0.025 g mol de vapor de H20, está contenida a una presión total de 830 mm de Hg y 323 K. Calcule lo siguiente: a) Fracción mol de cada componente. b) Presión parcial de cada componente en mm de Hg. c) Volumen total de la mezcla en m3 y pie3. 1.4-4. Evaporación de un liquido orgánico sensible al calor. Un líquido orgánico se evapora de una solución líquida que contiene un bajo porcentaje de sólidos no volátiles disueltos. Puesto que el sólido es sensible al calor y puede volverse amarillento a temperaturas elevadas, es necesario evaporarlo al vacío. Si la presión absoluta más baja que puede obtenerse en el aparato es 32 Ejercicios 12.0 mm de Hg, jcuál será la temperatura de evaporación en K? Se supondrá que la pequeña cantidad de sólidos no afecta la presión de vapor, que se expresa como sigue: log PA = -2250 0 + + 9.05 donde PA está en mm de Hg y Ten K. Respuesta: T = 282.3 K o 9.1 “C. 1 S-l. Evaporación de soluciones de azúcar de caña. Se está usando un evaporador para concentrar soluciones de azúcar de caña. Se evaporan 10000 kg/día de una solución que contiene 38% en peso de azúcar, obteniéndose una solución con 74% en peso. Calcule el peso de la solución obtenida y la cantidad de agua extraída. Respuesta: 5135 kgldía de la solución al 74% en peso, 4865 kgldía de agua 1.5-2. Procesamiento de harina depescado. Algunos pescados se procesan como harina de pescado para usarse como proteínas suplementarias en alimentos. En el proceso empleado primero se extrae el aceite para obtener una pasta que contiene 80% en peso de agua y 20% en peso de harina seca . Esta pasta se procesa en secadores de tambor rotatorio para obtener un producto “seco” que contiene 40% en peso de agua. Finalmente, el producto se muele a grano fino y se empaca. Calcule la alimentación de pasta en kgih necesaria para producir 1000 kg/h de harina “seca”. Respuesta: 3000 kglh de pasta 1.5-3. Secado de madera. Un lote de 100 kg de madera húmeda con 11% en peso de humedad, se seca hasta reducir el contenido de agua a 6.38 kg/l.O kg de madera seca. ¿Cuál es el peso de madera “seca” y la cantidad de agua que se elimina? 1.54. Procesamiento de pulpa de madera. Una pulpa de madera húmeda contiene 68% en peso de agua. Después de secarla se determina que se ha eliminado el 55% de agua original de la pulpa. Calcule la composición de la pulpa “seca” y su peso para una alimentación de 1000 kg/min de pulpa húmeda. 1.5-5. Producción de jalea a partir de frutas maceradas en un proceso de dos etapas. En un proceso para fabricar jalea, la fruta macerada que tiene 14% en peso de sólidos solubles se mezcla con aztícar (1.22 kg aztícar/l .OO kg de fruta) y pectina (0.0025 kg pectina/1 .OO kg de fruta). La mezcla resultante se evapora en una olla para producir una jalea con 67% en peso de sólidos solubles. Calcule, para una alimentación de 1000 kilogramos de fruta macerada, los kilogramos de mezcla obtenida, los kilogramos de agua evaporada y los kilogramos de jalea producida. Respuesta: 2222.5 kg de mezcla, 189 kg de agua, 2033.5 kg de jalea 1.5-6. Secado de raíces de casave (tapioca). La harina de tapioca se usa en muchos países para hacer pan y productos similares. La harina se procesa secando los granos gruesos de la raíz de casave (que contienen 66% en peso de humedad) hasta reducirla al 5% y moliendo hasta finura de harina. iCuántos kilogramos de granos deben secarse y qué cantidad de agua tiene que extraerse para producir 5000 kilogramos de harina por hora? 1.5-7. Procesamiento de frijol de soya en tres etapas. Una alimentación de 10000 kg de frijol de soya se procesa en una secuencia de tres etapas (El). La alimentación contiene 35% en peso de proteína, 27.1% en peso de carbohidratos, 9.4% en peso de fibras y cenizas,l0.5% en peso de humedad y 18.0% de aceite. En la primera etapa, los frijoles se maceran y se prensan para extraer el aceite, obteniéndose corrientes de aceite y de pasta prensada que todavía contiene 6% de aceite. (Suponga que no hay pérdidas de otros constituyentes en la corriente de aceite.) En la segunda etapa, la pasta prensada se trata con hexano para obtener una corriente de pasta de soya extraída que contiene 0.5% en peso de aceite y una corriente de aceite-hexano. Suponga que no sale hexano en el extracto de soya. Finalmente, en la última etapa se seca el extracto para obtener un producto con 8% en peso de humedad. Calcule: cap. 1 Introducción a los principios de ingeniería y sus unidades 35 ! 1.6-5. 1.6-6. Calentamiento y vaporizacidn usando las tablas de vapor. Un flujo de 1000 kglh de agua a 21.1 “C se calienta 110 “C con una presión total de 244.2 kPa en la primera etapa del proceso. En la segunda etapa a la misma presión se calienta el agua aún más, hasta que se vaporiza a su punto de ebullición. Calcule las variaciones totales de entalpía en la primera etapa y en ambas etapas. Combustidn de CH4 y HP Para 100 g mol de una mezcla gaseosa de 75 moles % de CH4 y 25 moles % de H,, calcule el calor total de la combustión de la mezcla a 298 K y 101.32 kPa, suponiendo que la combustión es completa. 1.6-7. Calor de reacción a partir de calores de formación. Calcule el calor de la reacción. 4NWgI + 5W.g) + 4NW) + 6WW esto es, M, a 298 K y 101.32 kPa para la reacción de 4 g mol de NH3. Respuesta: M, calor de reacción = -904.7 kJ 1.7-1. Balance de calor y enfriamiento de leche. En el procesamiento de leche entera de vaca, se enfrían 4540 kg/h de 60 “C a 4.44 OC por medio de un refrigerante. Calcule el calor extraído de la leche. 1.7-2. Respuesta: Calor extraído de la leche = 269.6 kW Calentamiento de petróleo con aire. Un flujo de 2200 Ib,& de hidrocarburos petrolíferos a 100 “F entra a un intercambiador de calor, donde se calienta a 150 ‘F con aire. El aire caliente entra a 300 ‘F y sale a 200 “F. Calcule el total de Ib mol de aire/h que se necesita. La capacidad calorífica media del petróleo procesado es 0.45 btu/lb, ‘F. 1.7-3. 1.7-4. 1.7-5. Respuesta: 70.1 Ib mol aire& 3 1.8 kg mol/h Combustión de metano en un horno. Una corriente gaseosa de 10000 kg moho de Ch a 10 1.32 kPa y 373 K se quema en un horno usando aire a 3 13 K. La combustión es completa y se usa 50% de exceso de aire. El gas de combustión de salida está a 673 K. Calcule el calor consumido en el horno. (Sugerencia: Use una base de 298 K y agua 1íquida”a 298 K. Las entradas serán como sigue: la entalpía del CH4 a 373 K con respecto a 298; la entalpía del aire a 3 13 K con respecto a 298 K; -AH:, el calor de combustión del C& a 298 K, con respecto al agua líquida y q, el calor añadido. Los términos de salida serán: las entalpías del COZ, el 02, el N2 y el Hz0 gaseosos a 673 K con respecto a 298 K; y el calor latente del vapor de Hz0 a 298 K y 101.32 kPa según el apéndice A.2. Es necesario incluir este calor latente, pues la base del cálculo y de Al$ es agua líquida.) Precalentamiento de aire con vaporpara usarse en un secador. En un secador se va a usar una corriente de aire que está a 32.2 OC y que se debe calentar en un calentador de vapor a 65.5 “C. El flujo de aire es 1000 kg mol/h. La corriente de vapor entra al calentador saturada y a 148.9 YI, se condensa, se enfría y sale como líquido a 137.8 “C. Calcule la cantidad de vapor usado en kgh. Respuesta: 452 kg vaporlh Enfriamiento de latas de sopa de patata después de un procesamiento térmico. Un total de 1500 latas de sopa de patata se someten a un proceso termico en una retorta a 240 “F. Las latas se enfrían a 100 OF en la misma retorta antes de sacarlas por medio de agua fría, que entra a 75 “F y sale a 85 “F. Calcule las libras de agua de enfriamiento que se necesitan. Cada lata contiene 1 .O Ib de sopa líquida y la lata metálica vacía pesa 0.16 lb. La capacidad calorífica media de la sopa es 0.94 btu/lb; “F y la del metal es 0.12 btu/lb; “F. La cesta metálica que se usa para sostener las latas en la retorta pesa 3 50 Ib y su capacidad calorífica es de 0.12 btu/lb; “F. Suponga que la cesta metálica se enfría de 240 ?F a 85 ‘F, que es la temperatura del agua de salida. La cantidad de calor que se pierde ‘por las paredes de la 36 Ejercicios retorta al enfriar de 240 a 100 “F es 10000 btu. Las pérdidas de la retorta por radiación durante el enfriamiento son de 5000 btu. Respuesta: 21320 Ib de agua, 9670 kg 1.8-1. Integración grájica y numérica con el método de Simpson. Se obtuvieron los siguientes datos experimentales de y = f(x). Se desea determinar la integral a) Resuélvala por integración gráfica. b) Aplique el método numérico de Simpson. Respuesta: a) A = 38.55, b) A = 38.45 1.8-2. Integración gráfica y numérica para obtener elflujo de aguas de desperdicio. La medición del flujo de aguas de desperdicio en un canal abierto produce los siguientes datos experi- mentales. Tiempo (min) 0 10 20 30 4 0 50 60 Flujo (m3/min) 655 705 780 830 870 890 870 Tiempo (min) 10 8 0 9 0 100 110 120 Flujo (m’/min) 800 725 670 640 620 610 a) Determine el flujo total en metros cúbicos para los primeros 60 min y también el total para 120 min, por integración gráfica. b) Determine el flujo en 120 min usando el método numérico de Simpson. Respuesta: a) 48640 m3 para 60 min, 90390 m3 para 120 min REFERENCIAS (Cl) CHARM, S. E. The Fundamentals of Food Engineering, 2a. ed., Westport, Conn.: Avi Publishing Co., Inc., 1971. (El) EARLE, R. L. Unit Operations in Food Processing, Oxford: Pergamon Press, Inc., 1966. Cap. 1 Introducción a los principios de ingenieria y sus unidades 31 (Hl) HOUGEN, 0. A., Watson, K. M. y Ragatz, R. A. Chemical Process Principies, Parte 1, 2a. ed., Nueva York: John Wiley & Sons, Inc., 1954. (01) OKOS, M. R., M. S. Tesis. Ohio State University, Columbus, Ohio, 1972. (Pl) PERRY, R. H. y Green, D. Perry’s Chemical Engineers’ Handbook, 6a. ed. Nueva York: McGraw-Hill Book Company, 1984. (Sl) SOBER, H. A. Handbook of Biochemistry, Selected Data for Molecular Biology, 2a. ed., Cleveland: Chemical Rubber Co., Inc., 1970. (Wl) WEAST, R. C. y Selby, S. M. Handbook of Chemistry and Physics, 48a. ed., Cleveland: Chemical Rubber Co., Ix., 1967-1968. 40 Para el inciso b), 2.2 Estbtica de fluidos F = mg = (3 Ib,) 45359( &)(980665$ = 1. 332 x lo6 7 = 1.332 x lo6 dina Como otra alternativa para el inciso b), y usando el apéndice A. 1, 1 dina = 2.2481 * lo4 lbf F= (3 lbf) 1 22481 x Lom6 Lbfjdina 1 = 1.332 x lo6 dina Para calcular newtons en el inciso c), F=mg = 3lb,x ’ kg 2.2046 Ib, )( 9.80665;) kg.m = 13.32 7 = 13.32 N Como alternativa, usando los valores del apéndice A. 1, 1 7 (dina) = lOe5 y (newton) F = (1.332 x lo6 dina) 10 -5 newton dina = 13.32 N 2.2B Presión en un fluido Puesto que la ecuación (2.2-l) expresa la fuerza ejercida por una masa sometida a la acción de la gravedad, la fuerza desarrollada por una masa de fluido sobre su área de apoyo o fuerza/unidad de área (presión) también se obtiene con esta ecuación. En la figura 2.2-l se muestra la columna estacionaria de un fluido de altura Ir2 m y una sección transversal de área constante A m2, donde A = Au = Ar = Al. La presión por encima del fluido es PO N/m2, es decir, podría ser la presión de la atmósfera que lo rodea. En cualquier punto del fluido, digamos hr, éste debe soportar todo el fluido que esta por encima de dicho punto. Se puede demostrar que en cualquier punto de un fluido inmóvil o estático, las fuerzas son iguales en todas las direcciones. Además, para un fluido en reposo, la fuerza/unidad de area o presión es igual en todos los puntos auna misma altura. Por ejemplo, a una distancia hl del nivel superior, la presión es igual en todos los puntos del área de corte transversal A 1. Se mostrará el uso de la ecuación (2.2-l) para calcular la presión en diferentes puntos verticales en la figura 2.2-l. La masa total del fluido para altura h2 y densidad p kg/m3 es kg totales de fluido = (h2 m)(A m2)(p kg/m3) = h2 Ap kg (2.2-2) Cap. 2 Principios de transferencia de momento lineal y balances globales Ao A I PI T h r- ----- 1 ’ I t / 4 -I) ,- - - - _r / I T hz I / -42 -4 FIGURA 2.2- 1. Presión en un jluido estático Al sustituir en la ecuación (2.2-2), la fuerza total F del fluido sobre el área Al, debida únicamente al fluido es kg.m F = @244~ k)k ds2) = hdpg 7 WI (2.2-3) La presión P se define como la fuerza /unidad de área: (h2Apg) f = h2pg N/m2 o Pa (2.2-4) Ésta es la presión sobre AZ debida a la masa de fluido que está encima. Siu embargo, para obtener la presión total P2 sobre Al, debe tiadirse la presión Po que soporta todo el líquido. P2 = h2pg + PO N/m2 o Pa (2.2-5) La ecuación (2.2-5) es la expresión fundamental para calcular la presión de un fluido a cualquier profundidad. Para calcular PI, PI = hm + Po (2.2-6) La diferencia de presión entre los puntos 2 y 1 es P2 - P1 = (h2pg + Po) - (hlpg + PO) = (h2 - hl) pg (Unidades SI) (2.2-7) P2 - P1 = (h2 - hl)p-f c (Unidades del sistema inglés) Puesto que lo que determina la presión en un fluido es la altura vertical del mismo, la forma del reci- piente no afecta la presión. Por ejemplo, en la figura 2.2-2, la presión P1 en el fondo de los tres recipientes es igual y equivale a hlpg + PO. EJEMPLO 2.2-2. Presibn en un tanque de almacenamiento Un gran tanque de almacenamiento contiene petróleo de una densidad igual a 917 kg/m3 (0.9 17 g/cm3). El tanque tiene una altura de 3.66 m (12.0 pies) y está abierto a la atmósfera 42 2.2 Estática de jluidos FIGURA 2.2-2. Presiones en recipientes de diversas formas. Po = 1 atm abs p2 f 10 pies = h 1 2 pies = h2 1 FIGURA 2.2-3. Tanque de almacenamiento del ejemplo 2.2-2. con una presión de 1 atm abs en la superfkie. El tanque está lleno de petróleo a una profundidad de 3.05 m (10 pies) y también contiene 0.61 m (2.0 pies) de agua en la parte inferior. Calcule la presión en Pa y en psia a 3.05 m de la superficie y en el fondo del tanque. También calcule la presión manométrica del fondo del tanque. Solución: Primero se hace un diagrama del tanque, como el que se muestra en la figura 2.2-3. La presión PO = 1 atm abs = 14.696 psia (del apéndice 1). También, PO = 1.01325 x lo5 Pa Con base en la ecuación (2.2-6) se usan primero unidades del sistema inglés y después SI. PI = hlppet f- + PO = (10 pies) 0917 x 62.43% lbf c pie )( )(l+OIb, 1 144 pu lg2/pie2 + 14.696 lbf/pulg2 = 18.68 lb/pulg2 abs PI = hlppet g + PO = (3.05 m) = 1.287 x lo5 Pa Cap. 2 Principios de transferencia de momento lineal y balances globales 45 Al igualar la ecuación (2.2-10) con la (2.2-12) y al despejar se obtiene Pa ’ (Z + R)PBg = Pb + ZPBg + RPAg Pa - Pb = WPA - PBk (SI) P a - P b =R(PA-PB): (Unidades del sistema inglés) c (2.2-13) (2.2-14) El lector notará que la distancia Z no aparece en el resultado final, como tampoco las dimensiones del tubo, siempre y cuando pu y Pb se midan en el mismo plano horizontal. EJEMPLO 2.2-4. Diferencia de presión en un manómetro Un manómetro como el que se muestra en la figura 2.2-4a se usa para medir la carga o la caída de presión a través de un medidor de flujo. El fluido más pesado es el mercurio, con una densidad de 13.6 g/cm3 y el fluido de la parte superior es agua, con una densidad de 1 .OO g/cm3. La lectura en el manómetro es R = 32.7 cm. Calcule la diferencia de presión en N/m2 usando unidades del SI. Solución: Al convertir R en m, R = g = 0.327m Al convertir también PA y PB en kg/m3 y al sustituir en la ecuación (2.2-14) pu - Pb= R(~A - PB )g = (0.327 m)[(13.6 - l.O)(lOOO kg/m3)](9.8066 m/s2) = 4.040 x lo4 N/m2 (5.85 lb/pulg2 abs) 2. Tubo en U de dos fluidos. En la figura 2.2-4b se muestra un tubo en U de do; fluidos, que es un dispositivo sensible para medir pequeñas cargas o diferencia; de presión. Sea A m el área de corte transversal de cada uno de los depósitos grandes y a m , el área de la sección transversal de cada uno de los tubos que forman la U. Al proceder y hacer un balance de presión para el tubo en U, Pa-Pb=(R PR;PB+%PB-%Pc 8 (2.2-15) donde RO es la lectura cuando pu = Pb, R es la lectura real, PA es la densidad del fluido más pesado y PB la del fluido más ligero. Por lo general, u/A se hace lo suficientemente pequeño como para ser insignificante, y también RO se suele ajustar a cero; entonces, Pa - Pb = @PA - PB >g (SI) (2.2-16) P a - P b =R(PA-PB): c (Unidades del sistema inglés) Si PA y PB están cerca una de otra, la lectura de R se amplifica. EJEMPLO 2.2-S. Medición de la presión en un recipiente El manómetro de un tubo en U de la figura 2.2-5a se usa para medir la presión PA en un recipiente que contiene un líquido cuya densidad es pA. Deduzca la ecuación que relaciona la presión PA con la lectura del manómetro como se muestra. 2.2 Estática de fluidos Solución: En el punto 2, la presión es P2 = Patm + hPBg N/m2 En el punto 1, la presión es PI = PA + hlP& (2.2-17) (2.2-18) Al igualar p1 = p2 por los principios de hidrostática, y reordenando, PA = Patm + h2PBg - hP& (2.2-19) Otro ejemplo de un manómetro de tubo en U se muestra en la figura 2.2-5b. Este dispositivo se usa en este caso para medir la diferencia de presión entre dos recipientes. 3. Manómetro de presión de Bourdon. Aunque los manómetros se usan para medir presiones, el dispositivo más común para medir presiones es el manómetro mecánico de tubo de Bourdon. Un tubo hueco enroscado del manómetro tiende a enderezarse cuando está sujeto a una presión interna, y el grado de enderezamiento depende de la diferencia entre las presiones interna y externa. El tubo está conectado a un indicador en un cuadrante calibrado. 4. Separador por gravedad de dos líquidos inmiscibles. En la figura 2.24 se muestra un separador (decantador) por gravedad continuo para la separación de dos líquidos inmiscibles, A (líquido pesado) y B (líquido ligero). La mezcla de alimentación de los dos líquidos entra por un extremo del recipiente separador y los líquidos fluyen lentamente hacia el otro extremo, y se separan en dos capas distintas. Cada líquido fluye por un tubo de rebosamiento separado, como se muestra. Suponiendo que la resistencia por fricción al flujo por parte de los líquidos es esencialmente despreciable, se pueden usar los principios de la estática de fluidos para analizar su funcionamento. Patm 2 (4 (b) FIGURA 2.2-5. Medidas de la presión en recipientes: a) medida de la presión en un recipiente, b) medida de la presión diferencial. Cap. 2 Principios de transferencta de momento lineal y balances globales 47 Alimentación + Rebosamiento del líquido pesado A FIGURA 2.24. Separador por gravedad atmosférico continuo para líqurdos inmiscibles En la figura 2.2-6, la profundidad de la capa del líquido pesado A es hAl m y la B es hg. La profundidad total es hT = hA 1 + hB y está determinada por la posición del tubo de rebosamiento para B. El líquido pesado A se descarga por el sifón de rebosamiento hA2 m sobre el fondo del recipiente. Éste y los tubos de rebosamiento están abiertos a la atmósfera. Un balance hidrostático da hBPB¿Y + h,il PAg = hA2PAg Al sustituir hB = hr - hAl en la ecuación (2.2-20) y despejando hAl, 'h = ~,,+P,/P, l-PtJP.4 (2.2-21) Esto muestra que la posición de la interfaz o altura hAl depende de la razón de las densidades de los dos líquidos y de las elevaciones hA2 y hT de los dos tubos de rebosamiento. Normalmente, la altura hA2 es movible y el nivel de la interfaz puede ajustarse. 2.3 ECUACIÓN GENERAL DE TRANSPORTE MOLECULAR PARA TRANSFERENCIA DE MOMENTO LINEAL, CALOR Y MASA 2.3A Ecuación general de transporte molecular y balance general de propiedades 1. Introducción a los procesos de transporte. En los procesos de transporte molecular, lo que nos ocupa en general es la transferencia o desplazamiento de una propiedad o entidad dada mediante el movimiento molecular a través de un sistema o medio que puede ser un fluido (gas o líquido) o un sólido. Esta propiedad que se transfiere puede ser masa, energía térmica (calor) o momento lineal. Cada molécula de un sistema tiene una cantidad determinada de la masa, energía térmica o momento lineal asociada a ella, Cuando existe una diferencia de concentración de cualquiera de esas propie- dades de una región a otra adyacente, ocurre un transporte neto de esa propiedad. En los fluidos diluidos, como los gases, donde las moléculas están relativamente alejadas entre sí, la velocidad de transporte de la propiedad será relativamente alta puesto que hay pocas moléculas presentes para bloquear el transporte o para interactuar. En fluidos densos, como los líquidos, las moléculas están 50 2.3 Ecuación general de transporte molecular para transferencia de momento lineal, calor y masa La velocidad de entrada es ( I,u--I,) al cantidad de propiedads, y la velocidad de salida es ( I,U+ + & 1, donde el área de corte transversal es 1 .O m2. La velocidad de generación de la propiedad es R(Az~ l), donde R es la velocidad de generación de propiedads . m3. El término para la acumulacjón es velocidad de acumulación de propiedad = s (AZ . 1) (2.3-S) Al sustituir los diferentes términos en la ecuación (2.3-7), (y-qz) *l + R(b.1) = (&lz + AJ . 1 + $ (AZ . 1) Al dividir entre AZ y dejando que AZ llegue a cero, ar : avz - R at az (2.3-9) (2.3-10) Al sustituir I,U- de la ecuación (2.3-2) en la ecuación (2.3-10) y suponiendo que ¿I es constante, ar aa21- =R- - at a2 En el caso de que no haya generación, ar aa2r- - - at a2 (2.3-11) (2.3-12) Esta última ecuación relaciona la concentración de la propiedad r con la posición z y el tiempo t. Las ecuaciones (2.3-l 1) y (2.3-12) son ecuaciones generales para la conservación de momento lineal, energía térmica, o masa, y se usaran en muchas secciones de este libro. Las ecuaciones sólo consideran aquí el transporte molecular que ocurre, y no otros mecanismos de transporte como la convección, por ejemplo, que se tratarán cuando se deduzcan en secciones posteriores de esta obra las ecuaciones de conservación específicas para momento lineal, energía, o masa. 2.3B Introducción al transporte molecular La teoría cinética de los gases da una buena interpretación física del movimiento de las moléculas individuales en los fluidos. Debido a su energía cinética, las moléculas están en un rápido movimiento aleatorio, y a menudo chocan unas con otras. El transporte molecular o la difusión molecular de una propiedad como el momento lineal, el calor, o la masa, se lleva a cabo en un fluido gracias a esos movimientos aleatorios de las moléculas individuales. Cada molécula individual que contiene la propiedad que se transfiere se mueve al azar en todas direcciones, y se producen flujos en todas direcciones. Por lo tanto, si existe un gradiente de concentración de la propiedad, habrá un flujo neto de la propiedad desde la concentración alta hasta la baja. Esto sucede porque se difunde el mismo número de moléculas en todos sentidos entre las regiones de alta y baja concentración. Cap. 2 Principios de transferencia de momento lineal y balances globales 5 1 1. Transporte de momento lineal y la ley de Newton. Cuando un fluido fluye en la dirección x en forma paralela a una superficie sólida, existe un gradiente de velocidad donde la velocidad v, en la dirección x disminuye al acercarse a la superficie en la dirección z. El fluido tiene un momento lineal con dirección x y su concentración es vXp momento lineal/m3, donde el momento lineal tiene unidades de kg . m/s. Así, las unidades de vXp son (kg . m/s)/m3. Debido a la difusión aleatoria de las moléculas, existe un intercambio de moléculas en la dirección z, moviéndose igual número de ellas en cada dirección (direcciones + z y -z ) entre la capa de moléculas que se mueve mas rápido y la capa adyacente más lenta. Por lo tanto, el momento lineal con dirección x se ha transferido en la dirección z desde la capa que se mueve más rápido hacia la que lo hace más lentamente. La ecuación para este transporte de momento lineal es similar a la ecuación (2.3-2) y es la ley de Newton de la viscosidad escrita como sigue para una densidad p constante: 4% PI z2x = -v -z- (2.3-13) donde ~~~ es el flujo de momento lineal con dirección x en la dirección z (kg . m/s)/s * m2; v es Np, la difusividad de momento lineal en m2/s; z es la dirección de transporte o difusión en m; p es la densidad en kg/m3, y p es la viscosidad en kglm ’ s. 2. Trbnsporte de calor y ley de Fourier. La ley de Fourier para el transporte molecular de calor o la conducción de calor en un fluido o sólido puede escribirse como sigue para una densidad p constante y una capacidad calorífica cp. (2.3-14) donde &4 es el flujo de calor en J/s . m2, a es la difusividad térmica en m2/s y pcpT es la concentración de calor o energía térmica en J/m3. Cuando hay un gradiente de temperatura en un fluido, se difunden igual número de moléculas en todas direcciones entre la región caliente y la más fría. De esta manera se transfiere la energía en la dirección z. 3. Transporte de masa y la ley de Fick . La ley de Fick para el transporte molecular de masa en un fluido o en un sólido para una concentración total constante del fluido es (2.3-15) donde Ji, es el flujo de A en kg mol Ah *m 2, DAR es la difusividad molecular de la molécula A en B en m2/s, y CA es la concentración de A en kg mol A/m3. Del mismo modo que con el transporte de momento lineal y de calor, donde existe un gradiente de concentración en un fluido, se difundirán igual número de moléculas en todas direcciones entre las regiones de alta y de baja concentración, y ocurrirá un flujo neto de masa. Por consiguiente, las ecuaciones (2.3-13), (2.3-14) y (2.3-15) para la transferencia de momento lineal, de calor y de masa son similares entre sí y a la ecuación general de transporte molecular (2.3- 2). Todas estas ecuaciones tienen un flujo en el lado izquierdo, una difusividad en m2/s y la derivada de la concentración con respecto a la distancia. Las tres ecuaciones de transporte molecular son matemáticamente idénticas, por lo que se dice que tienen analogía o similitud entre sí. Pero debe resaltarse que, aunque existe una analogía matemática, los mecanismos físicos reales que ocurren 52 2.4 Viscosidad de los fluidos pueden ser completamente diferentes. Por ejemplo, en la transferencia de masa con frecuencia se transportan dos componentes mediante un movimiento relativo entre uno y otro. En el transporte de calor en un sólido, las moléculas están relativamente estacionarias y el transporte es realizado principalmente por los electrones. El transporte de momento lineal puede ocurrir por varios tipos de mecanismos. Algunas consideraciones más detalladas sobre los procesos de transporte de momento lineal, de energía y de masa se presentan en lo que resta de este capítulo y en los siguientes. 2.4 VISCOSIDAD DE LOS FLUIDOS 2.4A La ley de Newton y la viscosidad Cuando un fluido fluye a través de un canal cerrado, esto es, una tuberia o entre dos placas planas, se representan dos tipos de flujo, dependiendo de la velocidad de dicho fluido. A velocidades bajas, el fluido tiende a fluir sin mezclado lateral y las capas adyacentes se resbalan unas sobre las otras como los naipes de una baraja. En este caso no hay corrientes cruzadas perpendiculares a la dirección del flujo, ni tampoco remolinos de fluido. A este régimen o tipo de flujo se le llamaflujo laminar. A velocidades más altas se forman remolinos, lo que conduce a un mezclado lateral. Esto se llama j7ujo turbulento. En esta sección nos limitaremos a estudiar el flujo laminar. Con respecto a la viscosidad, un fluido puede diferenciarse de un sólido por su comportamiento cuando se somete a un esfuerzo (fuerza por unidad de área) o fuerza aplicada. Un sólido elástico se deforma en una magnitud proporcional similar al esfuerzo aplicado. Sin embargo, cuando un fluido se somete a un esfuerzo aplicado similar continúa derformándose, esto es, fluye a una velocidad que aumenta con el esfuerzo creciente. Un fluido exhibe resistencia a este esfuerzo. La viscosidad es la propiedad de un fluido que da lugar a fuerzas que se oponen al movimiento relativo de capas adyacentes en el fluido. Estasfuerzas viscosas se originan de las que existen entre las moléculas del fluido y son de carácter similar a lasfuerzas cortantes de los sólidos. Estas ideas resultaran más claras al estudiar la viscosidad desde un punto de vista cuantitativo. En la figura 2.4-l se muestra un fluido encerrado entre dos placas paralelas infinitas (muy largas y muy anchas). Supóngase que la placa inferior se desplaza paralelamente a la superior a una velocidad constante Av, rn/s mayor que la de la placa superior, debido a la aplicación de una fuerza uniforme de F newtons. Esta fuerza se llama retardo viscoso y tiene su origen en las fuerzas viscosas del fluido. Las placas tienen una separación Ay m. Todas las capas del líquido se desplazan en la dirección z. La capa inmediatamente adyacente a la placa inferior se desplaza a la velocidad de dicha placa. La capa que le sigue hacia arriba se mueve a una velocidad un poco menor, y cada una de ellas tiene una velocidad un poco menor que la anterior al recorrer el fluido en la dirección y. Este perfil de velocidades es lineal con respecto a la dirección y, tal como se muestra en la figura 2.4-l. Una analogía de este fluido seria un mazo de naipes donde al mover el naipe de abajo, todos los demás presentan también cierto grado de desplazamiento. Para muchos fluidos se ha determinado en forma experimental que la fuerza F en newtons es directamente proporcional a la velocidad Av, en m/s , el área A en m2 de la placa usada, inversamente proporcional a la distancia Ay en m. Expresada con la ley de viscosidad de Newton cuando el flujo es laminar, (2.4-l) donde p es una constante de proporcionalidad llamada viscosidad del fluido en Pa . s o kg ! m . s. Cuando Ay tiende a cero y usando la definición de derivada, (Unidades SI) (2.4-2) Cap. 2 Principios de transferencia de momento lineal y balances globales 55 Lo anterior puede ilustrarse considerando la interacción entre dos capas adyacentes de un fluido en la figura 2.4- 1, cuyas velocidades son diferentes y que, por tanto, tienen momento lineal distintos en la direcciónz. Los movimientos desordenados de las moléculas en la capa de mayor velocidad envían a algunas de ellas a la capa más lenta, donde chocan con las moléculas de menor velocidad y tienden a acelerarlas o a aumentar su momento lineal en la dirección z. Además, y de la misma manera, las moléculas de la capa más lenta tienden a retardar a las de la capa más rápida. Este intercambio de moléculas entre las capas produce una transferencia o flujo de momento lineal en la dirección z de las capas de mayor velocidad a las de velocidad más baja. El signo negativo de la ecuación (2.4-2) indica que el momento lineal se transfiere hacia abajo por el gradiente de regiones de alta a baja velocidad. Esto es similar a la transferencia de calor de las regiones de alta a las de baja temperatura. 2.4C Viscosidad de los fluidos newtonianos Los fluidos que obedecen la ley de viscosidad de Newton, ecuaciones (2.4-l) a (2.4-3) se llaman jikidos newtonianos. En los fluidos newtonianos existe una relación lineal entre el esfuerzo cortante Q y el gradiente de velocidad dvddy (velocidad cortante). Esto significa que la velocidad p es constante e independiente de la velocidad cortante. En fluidos no newtonianos, la relación entre zyZ y dvddy no es lineal, es decir, la viscosidad p no permanece constante sino que está en función de la velocidad cortante. Algunos líquidos no obedecen esta ley simple de Newton, como pastas, lechadas, altos polímeros y emulsiones. La ciencia del flujo y deformación de los fluidos se llama reologia. No se estudiarán aquí los fluidos no newtonianos, ya que se mcluyen en la sección 3.5. La viscosidad de los gases, que son fluidos newtonianos, aumenta con la temperatura y es aproximadamente independiente de la presión hasta unos 1000 kPa. A presiones más elevadas, la viscosidad de los gases aumenta al incrementarse la presión. Por ejemplo, la viscosidad del N2 gaseoso a 298 K casi se duplica al subir de 100 kPa a 5 x lo4 kPa (Rl). En los líquidos, la viscosidad disminuye al aumentar la temperatura. Puesto que los líquidos son esencialmente incompresibles, la presión no afecta su viscosidad. TABLA 2.4-l. Viscosidades de algunos gases y líquidos a 101.32 kPa de presión. Temp. Sustancia K Gases Viscosidad (Pa s)103 0 (kg/m s) lo3 Ref Sustancia Líquidos Viscosidad Temp. (Pa s)103 0 K (kg/m s ) 103 ReJ: A i r e 2 9 3 0.01813 c o 2 2 7 3 0.01370 Rl 3 7 3 0.01828 Rl CH4 2 9 3 0.01089 Rl so2 3 7 3 Agua 293 1.0019 Sl 3 7 3 0.2821 Sl Benceno 2 7 8 0.826 Rl Glicerina Hg Aceite de oliva 2 9 3 1 0 6 9 Ll 2 9 3 1.55 R2 3 0 3 8 4 El En la tabla 2.4- 1 se incluyen datos experimentales de algunos fluidos puros típicos a 10 1.32 kPa. Las viscosidades de los gases son las más bajas y no difieren mucho entre un gas y otro, siendo de más o menos 5 x 1 Op6 a 3 x 1 Oe Pa . s. Las viscosidades de los líquidos son mucho más elevadas. El valor 56 2.5 Tipos de jlujo de fluidos y el número de Reynolds para el agua a 293 K es de 1 x 1 Ow3 y para la glicerina es de 1.069 Pa . s; por consiguiente, existen grandes diferencias entre las viscosidades de los líquidos. Se incluyen tablas de viscosidades más completas para el agua en el apéndice A.2, en el apéndice A.3 para líquidos y gases inorgánicos y orgánicos, y en el apéndice A.4 para líquidos biológicos y alimenticios. En otras referencias (P 1, Rl, Wl, Ll), pueden encontrarse datos más completos. También existen métodos (Rl) para estimar viscosidades de gases y líquidos cuando no se cuenta con datos experimentales. Estos métodos de estimación son bastante precisos para gases a presiones inferiores a 100 kPa, con un error de *5 %, pero los procedimientossimilares para líquidos son poco exactos, 2.5 TIPOS DE FLUJO DE FLUIDOS Y EL NÚMERO DE REYNOLDS 2.5A Introducción y tipos de flujo de fluidos Los principios de la estática de fluidos, estudiados en la sección 2.2 son casi una ciencia exacta. Por otra parte, los principios del movimiento de los fluidos son bastante complicados. Las relaciones básicas que describen el movimiento de un fluido están comprendidas en la ecuaciones para los balances totales de masa, energía y momento lineal, que se tratarán en las secciones siguientes. Estos balances totales (o macroscópicos) se aplicaran a un recipiente finito o volumen fijo en el espacio. Usamos el término “total” debido a que deseamos describir estos balances con respecto al exterior del recipiente. Los cambios dentro del recipiente quedan determinados en términos de las propiedades de las corrientes de entrada y salida, y de los intercambios de energía entre el recipiente y sus alrededores. Al llevar a cabo balances totales de masa, energía y momento lineal, no interesan los detalles de lo que ocurre dentro del recipiente. Por ejemplo, en un balance total se consideran velocidades de entrada y salida promedio. Sin embargo, en un balance diferencial se puede obtener la distribución de velocidades dentro del recipiente por medio de la ley de viscosidad de Newton. En esta sección estudiaremos primero los dos tipos de flujo de fluidos que se pueden verificar: flujo laminar y flujo turbulento. Además, se considerará también el número de Reynolds, que se usa para caracterizar los tipos de flujo. Después, en las secciones 2.6, 2.7 y 2.8 se describe el balance global de masa, el balance de energía y el balance de momento lineal, junto con varias aplicaciones. Por último, en la sección 2.9 se estudiarán los métodos para efectuar un balance de un elemento en el recinto para obtener la distribución de velocidades de dicho elemento y la caída de presión. 2.5B Flujo laminar y flujo turbulento El tipo de flujo que se presenta en el desplazamiento de un fluido por un canal es muy importante en los problemas de dinámica de fluidos. Cuando los fluidos se mueven por un canal cerrado de cualquier área de corte transversal, se puede presentar cualquiera de dos tipos diferentes de flujo, dependiendo de las condiciones existentes. Estos dos tipos de flujo pueden verse con frecuencia en un río o en cualquier corriente abierta. Cuando la velocidad del flujo es baja, su desplazamiento es uniforme y terso. Sin embargo, cuando la velocidad es bastante alta, se observa una corriente inestable en la que se forman remolinos o pequeños paquetes de partículas de fluido que se mueven en todas direcciones y con gran diversidad de ángulos con respecto a la dirección normal del flujo. El primer tipo de flujo avelocidades bajas, donde las capas de fluido parecen desplazarse unas sobre otras sin remolinos o turbulencias, se llarna~z@ luminar y obedece la ley de viscosidad de Newton estudiada en la sección 2.4A. El segundo tipo de flujo a velocidades más altas, donde se forman remolinos que imparten al fluido una naturaleza fluctuante, se llamaflujo turbulento. Cap. 2 Principios de transferencia de momento lineal y balances globales 51 La existencia de flujo laminar y turbulento puede visualizarse con facilidad por medio de los experimentos de Reynolds, que se muestran en la figura 2.5 1. Se hace fluir agua de manera uniforme a través de una tubería transparente, controlando la velocidad por medio de una válvula situada al final del tubo. Se introduce una corriente muy fina y uniforme de agua con un colorante, a través de una boquilla de inyección, para observar su flujo. Cuando la velocidad de flujo del agua es baja, la coloración es regular y forma una sola línea, esto es, una corriente similar a un cordel, tal como lo muestra la figura 2.5-la. En este caso no hay mezclado lateral del fluido y éste se desplaza en una línea recta por el tubo. Al colocar varios inyectores en otros puntos de la tubería se demuestra que no hay mezclado en ninguna parte del mismo y que el fluido fluye en líneas rectas paralelas, A este tipo de flujo se le llama laminar o viscoso. - Agua con colorante flujo del colorante (8) FIGURA 2 .5 - l . Experimento de Reynolds para diferentes tipos de flujo: a) laminar, b) turbulento Al aumentar la velocidad, se ve que al llegar a cierto límite, la línea de colorante se dispersa y su movimiento se vuelve errático, tal como lo muestra la figura 2.5lb. A este tipo de flujo se le llama turbulento. La velocidad a la que se presenta el cambio de tipo de flujo se llama velocidad critica. 2.W El número de Reynolds Con diversos estudios se ha podido demostrar que la transición del flujo laminar al turbulento en tuberías no está sólo en una función de la velocidad, sino también de la densidad y viscosidad del fluido y del diámetro del tubo. Estas variables se combinan en la expresión del numero de Reynolds, que es adimensional: donde NR~ es el número de Reynolds, D es el diámetro en m, p es la densidad del fitido en kg/m3, p es la viscosidad del fluido en Pa . s y v es la velocidad promedio del fluido en m/s (definiendo la 60 2.6 Balance total de masa y ecuación de continuidad donde m = kgfs. Con frecuencia, vp se expresa como G = vp, donde G es la velocidad de masa o flujo específico de masa en kgh * m2. En unidades del sistema inglés, v está en piels, p en lb,/pie3, A en pie2, m en Ib& y G en lb,/s 9 pie2. EJEMPLO 2.6-l. Flujo y balance de masa de petróleo crudo Un petróleo crudo con una densidad de 892 kg/m3 fluye a través del sistema de tuberías que se muestra en la figura 2.6-2 a una velocidad total de 1.388 x lOe3 m3/s a la entrada de la tubería 1. El flujo se divide en partes iguales entre las tres tuberías. Las tuberías son de acero de cédula 40 (véase en el apéndice A.5 las dimensiones exactas). Calcule lo siguiente usando unidades SI. a) Velocidad total del flujo de masa m en las tuberías 1 y 3. b) Velocidad promedio v en 1 y 3. c) Velocidad de masa G en 1. Solución: De acuerdo con el apéndice A.5, las dimensiones de las tuberías son las siguientes: tuberías de 2 pulg: D,(DI) = 2.067 pulg, área de corte transversal, Al = 0.02330 pie2 = 0.02330 (0.0929) = 2.165 x 1O-3 m2 tubería de l+ pulg: D3 (DI) = 1.610 pulg, área de corte transversal A3 = 0.01414 pie2 = 0.01414 (0.0929) = 1.313 x 10p3 m2 La velocidad total del flujo de masa en las tuberías 1 y 2 es igual, y ml = (1.388 x 10-3 m3/s) (892 kg/m3) = 1.238 kg/s Puesto que el flujo se divide en partes iguales en las tres tuberías, m, 1.238 m3=-= - = 0.619 kg/s2 2 Para el inciso b), usando la ecuación (2.6-2) y despejando v, m1 - 1.238 kg/ s v’ = x - (892 kg/m3)(2.165 x 10w3m2) = o’641 m’s m3 - 0.619- - - ‘ 3 - b’3A3 (892)(1.313x 10-3) = o’528 m’s de 1 1/2 pulg de 1 1/2 pulg FIGURA 2.6-2. Sistema de tuberías del ejemplo 2.6-I. Cap. 2 Principios de transferencia de momento lineal y balances globales 6 1 Para el inciso c), 1.238 2.165 x 1O-3 = 572kg s.m2 2.6B Volumen de control para balances Las leyes de conservación de la masa, la energía y el momento lineal se refieren siempre a un sistema y gobiernan la interacción de dicho sistema con sus alrededores. El sistema se define como una cierta cantidad de fluido de identidad conocida. Sin embargo, en el flujo de fluidos no es fácil identificar las partículas individuales. Como resultado, la atención se centra en un cierto espacio a través del cual fluye el fluido en vez de hacerlo en una cierta masa del fluido. El método empleado que resulta más conveniente consiste en seleccionar un volumen de control que es una región constante en el espacio a través de la cual fluye el fluido. En la figura 2.6-3 se muestra el caso de un fluido que pasa a través de un conducto. La superficie de control que se representa como una línea punteada, es la superficie que rodea al volumen de control. En la mayoría de los problemas, parte de la superficie de control coincide con algún límite físico tal como la pared del dueto. El resto de la superficie de control es un área hipotética a través de la cual puede fluir el fluido, tal como lo muestran los puntos 1 y 2 en la figura 2.6-3. La representación del volumen de control es análoga a la del sistema abierto en termodinámica. 2.6C Ecuación global para el balance de masa Al deducir la ecuación general para el balance total de masa, la ley de la conservación de la masa puede enunciarse como sigue para un volumen de control donde no se genera masa: velocidad de salida de masa del volumen de control velocidad de entrada de masa al volumen de control + velocidad de acumulación de masa en el volumen de control = 0 (velocidad de generación de masa) (2.6-3) Considérese ahora el volumen general de control fijo en el espacio y localizado en el campo de flujo de un fluido, tal como lo muestra la figura 2.6-4. Para un elemento pequeño de área dA m2 en la superficie de control, la velocidad de efusión de masa de este elemento = (pv )(dA cos IX), donde (dA cos a) es Volumen de control 1 FIGURA 2.6-3 Volumen de control para el jlujo a través de un dueto. 62 2.6 Balance total de masa y ecuación de continuidad el área dA proyectada perpendicularmente al vector de velocidad v, a es el ángulo entre el vector de velocidad v y el vector unitario dirigido hacia afuera n, que es perpendicular a d4; y p es la densidad en kg/m3. La cantidad pv tiene unidades de kg/s * m2 y se llama velocidad o pujo especz@o de masa G. Volumen Líneas de corriente Normal a la superficie del fluido Superficie de control J FIGURA 2.64. Flujo a través de un Brea diferencial dA en una superjicie de control. Por el álgebra vectorial se sabe que (pv)(dA cos a) es el producto escalar p (v * n)dA. Integrando esta cantidad entre los límites de la totalidad de la superficie de control,4 se obtiene el flujo neto de masa a través de la superficie de control, o la efusión neta de masa en kg/s para la totalidad del volumen de control V. efusión neta de masa desde el volumen de control vp cos a dA = SS p( v. n)dA A (2.6-4) Nótese que si hay entrada de masa al volumen de control, esto es, cuando existe flujo hacia adentro a través de la superficie de control, la efusión neta de masa en la ecuación (2.6-4) es negativa, pues a > 90” y cos a es negativo. Por lo tanto, hay un aporte neto de masa. Si a < 90”, habrá una efusión neta de masa. La velocidad de acumulación de masa dentro del volumen de control Vpuede expresarse como sigue: velocidad de acumulación de masa en el volumen de control pdV = TV (2.6-5) donde M es la masa de fluido en el volumen en kg. Sustituyendo las ecuaciones (2.6-4) y (2.6-5) en la (2.6-3) se obtiene la forma general del balance total de masa: IIP(V.n)dA+&Jj/-pdV = 0 A V (2.6-6) El uso de la ecuación (2.6-6) puede ilustrarse para una situación común de un flujo unidimensional de estado estacionario, donde todo el flujo hacia adentro es normal a A 1 y el que sale es normal a AZ, tal como se muestra en la figura 2.6-3. Cuando la velocidad v2 de salida (Fig. 2.6-3) es perpendicular a AZ, el ángulo a2 entre la perpendicular a la superficie de control y la dirección de la velocidad es 0” y cos a2 = 1.0. Donde ~1 se dirige hacia el interior, al > x/2, y para el caso en la figura 2.6-3, al es 180” (cos al = -1.0). Como a2 es 0” y al es 180”, usando la ecuación (2.6-4), Cap. 2 Principios de transferencia de momento lineal y balances globales 65 2.6D Velocidad promedio para uso en el balance global de masa Al resolver el caso de la ecuación (2.6-7) supusimos una velocidad constante vl en la sección 1 y una v2 constante en la sección 2. Si la velocidad no es constante, sino que varía en distintos puntos del área de superficie, se define una velocidad general o promedio mediante 1 vprom = 2 II VdA A para una superficie sobre la cual v es perpendicular a A y la densidad p se supone constante. EJEMPLO 2.6-3. Variación de la velocidad en diferentes puntos de la superficie de control y velocidad promedio Para el caso de un flujo incompresible @ es constante) a través de una tubería circular de radio R, el perfil de velocidad es parabólico para el flujo laminar, como sigue: v=v,g.& l- 5 2[ 01 (2.6-18) donde vmáx es la velocidad máxima en el centro donde r = 0, y v es la velocidad a una distancia radial r del centro. Deduzca una expresión para la velocidad general o promedio vprom para usarla en la ecuación global de balance de masa. Solución: La velocidad promedio está representada en la ecuación (2.6-17). En coordenadas cartesianas d4 es a!x dy. Sin embargo, usando coordenadas polares, que son más apropiadas para una tubería, CU = r dr de, donde 0 es el ángulo en coordenadas polares. Sustituyendo la ecuación (2.6-18), aY = r dr de, y A = nR2 en la ecuación (2.6-17) e integrando vprom = --&~~‘fvrnáx[ l-($]r dr de = ~~~“~oR (R’ -r’)r dr de (2.6-19) vmáx Vprom =-2 (2.6-20) En este análisis se consideraron balances de masa totales o macroscópicos, pues se deseaba describirlos desde el exterior. En esta sección sobre balances globales de masa, algunas de las ecuaciones que se presentaron pueden parecer un tanto obvias, pero el propósito era desarrollar métodos que pudieran resultar útiles en las siguientes secciones.También se estudiarán balances generales de energía y de momento lineal. Estos balances generales no son indicativos de los detalles de lo que sucede en el interior. Sin embargo, en la sección 2.9 se tendrá un balance de momento lineal de recinto para obtener estos detalles y determinar la distribución de velocidades y la caída de presión. Para comprender mejor los detalles de los procesos que se verifican en el interior del sistema, se pueden escribir balances diferenciales en lugar de balances de recinto, tal y como se estudia en los temas de las secciones 3.6 a la 3.9 relativos a ecuaciones diferenciales de continuidad y transferencia 66 2.7 Balance global de energia , de momento lineal; en las secciones 5.6 y 5.7 sobre ecuaciones diferenciales de cambios de energía y flujo de capa límite, y en la sección 7.5B que estudia las ecuaciones diferenciales de continuidad para una mezcla binaria. 2.7 BALANCE GLOBAL DE ENERGÍA 2.7A Introducción La segunda propiedad que debe considerarse en los balances globales del volumen de control es la energía. Se aplicará el principio de conservación de la energía a un volumen de control fijo en el espacio de manera similar al caso de conservación de la masa, para obtener los balances generales de masa. La ecuación de conservación de la energía se combinará con la primera ley de la termodinámica, a fin de obtener la ecuación global final de balance de energía. La primera ley de la termodinámica puede escribirse como AE=Q-W (2.7-1) donde E es la energía total por unidad de masa de fluido, Q es el calor absorbido por unidad de masa de fluido, y W es el trabajo de cualquier clase realizado por unidad de masa de fluido sobre los alrededores. En estos cálculos, todos los términos de la ecuación deben expresarse en el mismo sistema de unidades, tales como J/kg (SI), btu/lb, o pie * lbf/lb, (sistema inglés). Puesto que la masa lleva consigo una energía que depende de su posición, movimiento o estado físico, todos estos tipos de energía aparecen en el balance de energía. Además, también puede transportarse energía a través del límite del sistema sin transferencia de masa. 2.7B Deducción de la ecuación de balance global de energía El balance para una cantidad que se conserva, como en el caso de la energía, es similar a la ecuación (2.6-3) y se expresa como sigue para un volumen de control. velocidad de salida - velocidad de entrada + velocidad de acumulación = 0 (2.7-2) La energía E presente en un sistema puede clasificarse en tres formas. 1. Energia potencial zg de una unidad de masa de fluido, que es la energía presente debido a la posición de la masa en un campo gravitacional g, donde z es la altura relativa en metros desde un plano de referencia. Las unidades de zg en el sistema SI son m * m/s2. Multiplicando y dividiendo por kg masa, las unidades pueden expresarse como (kg * m/s2) * (mikg), o Jikg. En unidades del sistema inglés, la energía potencial es zg/gC en pie . lbf/lb,. 2. Energía cinética $12 de una unidad de masa de fluido, que es la energía presente debida al movimiento de traslación o rotación de la masa, donde v es la velocidad en rn/s con respecto al límite del sistema en cierto punto. De nueva cuenta, en el sistema SI las unidades de v2/2 son J/ kg. En el sistema inglés, la energía cinética v2/2gC se da en pie * lbf/ Ib,. 3. Energía interna U de una unidad de masa de un fluido, que es toda la demás energía presente, tal como de rotación o vibración de enlaces químicos.También las unidades son J/kg o pie * lbf/lb,. Cap. 2 Principios de transferencia de momento lineal y balances globales 67 Entonces, la energía total del fluido por unidad de masa es E=U+Z+zg 2 (SI) (2.7-3) vzE=U+=+z (Unidades del sistema inglés) La velocidad de acumulación de energía en el volumen de control V de la figura 2.6-4 es velocidad de acumulación de energía en el volumen de control (2.7-4) Después se considera la velocidad de entrada y salida de energía asociada con la masa en el volumen de control. La masa añadida o extraída del sistema lleva consigo energía interna, cinética y potencial. Además, cuando la masa fluye dentro y fuera del volumen de control, se transfiere energía. También se efectúa un trabajo neto cuando el fluido fluye por el volumen de control. Este trabaj o presión-volumen por unidad de masa de fluido espV. Por lo regular se rechaza la contribución del trabajo cortante. Los términos pV y U se combinan usando la definición de entalpía, H. H=U+pV (2.7-5) Por lo tanto, la energía total transportada con una unidad de masa es (H + v2/2 + zg). Para un área pequeña d4 en la superficie de control en la figura 2.6-4, la velocidad de efusión de energía es (H + $/ 2 + zg)(pv)(& cos a), donde (d4 cos a) es el área d4 proyectada en dirección perpendicular al vector de velocidad v y a es el ángulo entre el vector de velocidad y el vector unitario perpendicular n, en dirección al exterior. Esta cantidad se integra entre los límites de la totalidad de la superficie de control y se obtiene efusión neta de energía desde el volumen de control V2 H+T+zg 1 (pv)cosa dA (2.7-6) Ya se han considerado todas las energías asociadas con lamasaen el sistema y a través de los límites del balance, ecuación (2.7-2). A continuación se considera la energía calorífica y el trabajo que se transfieren por los límites y no están éstos asociados con la masa. El término q es el calor transferido al fluido a través de los límites por unidad de tiempo, debido al gradiente de temperatura. El calor absorbido por el sistema es positivo por definición. El trabajo W, que es energía por unidad de tiempo, puede dividirse en W,, que es trabajo mecánico puro y que se identifica con un eje giratorio que atraviesa la superficie de control, y el trabajo presión- volumen, que se ha incluido en el término de entalpía Hde la ecuación (2.7-6). Por definición, el trabajo realizado por el fluido sobre los alrededores, esto es, el que sale del sistema, es positivo. Para obtener el balance general de energía se sustituyen las ecuaciones (2.7-4) y (2.7-6) en el balance (2.7-2) igualando la ecuación resultante con q - W,. V2 H+2+zg (/w) cosa dA+$ V2 U+2+zg 1 pdV = W, (2.7-7) 70 2.7 Balance global de energía = (27~)2~v;,, R R2 -r2 3 7CR2 J’ ’ r dr =~ó~;~,,~ R 0 R6 Rsjo (R’ -r2)3r dr (2.7-17) Al integrar la ecuación (2.7-17) y reordenar ( 1V3 qhn Rpmm =-J’, (R” -3r2R4 +3r4R2 -r6)r drR8 = qhn Al sustituir la ecuación (2.7-18) en la (2.7-14), (2.7-18) 3 Vpm 3 VpKlm a=-=-= ( 1 v3 2v;mm Om50 pmm (2.7-19) Por tanto, para el flujo laminar el valor de a que se debe usar en el término de energía cinética de la ecuación (2.7-10) es 0.50. 3. Flujo turbulento. Para el flujo turbulento se necesita una relación entre v y la posición. Esto puede aproximarse mediante la siguiente expresión: R-r “’ v = Vmáx Rc-1 donde r es la distancia radial a partir del centro. Esta ecuación $2.7-20) se sustituye en la ecuación (2.7-15) y la resultante se integra para obtener el valor de (v )prom. En seguida, se sustituye 3 ecuación (2.7-20) en la ecuación (2.6-17) y esta ecuación se ‘integra para obtener vprom y (vprom) . Combinando los resultados para (v3)prom y (vpr0,.J3 en la ecuación (2.7-14), el valor a es 0.945 (véase la solución en el problema 2.7-l). El valor de a para el flujo turbulento varía entre 0.90 y 0.99. En la’mayoría de los casos (excepto para un trabajo preciso) el valor de a se toma como 1.0. 2.7E Aplicaciones de la ecuación del balance total de energía El balance total de energía en la forma expresada ecuación (2.7-10) no se suele emplear cuando ocurren cambios apreciables de entalpía o cuando la cantidad de calor sustraída (o agregada) es considerable, pues los términos de energía cinética y energía potencial son pequeños y pueden despreciarse. Como resultado, cuando se adicionan o se sustraen cantidades apreciables de calor o existen cambios de entalpía, por lo general se usan los métodos de balance de calor de la sección 1.7. Consideremos un ejemplo para ilustrar esto. EJEMPLO 2.7-1. Balance de energía en una caldera de vapor Auna caldera de vapor entra agua a 18.33 “C (65 “F) y 137.9 kPa (20 lb/pulg2 abs) a través de una tubería a una velocidad promedio de 1.52 m Is. El vapor sale a 137.9 kPa a una altura de 15.2 m sobre la entrada de líquido, a 148.9 “C y 9.14 m/s en la línea de salida. ¿Cuánto calor debe añadirse en estado estable por kg masa de vapor? El flujo en las dos tuberías es turbulento. Cap. 2 Principios de transferencia de momento lineal y balances globales 7 1 Solución: En la figura 2.7-2 se muestra el diagrama de flujo del proceso. Reordenando la ecuación (2.7-10) y estableciendo a = 1 para flujo turbulento y Ws = 0 (no hay trabajo externo), Q=(vz&+ T+(H*_.) (2.7-21) Al despejar para los términos de energía cinética, vl (152)1-=-=l.I15 J/kg 2 2 3 - (9-14)2 _ 4177 J/kg 2 -2- Al tomar la altura de referencia zt en el punto 1, z2 = 15.2 m. Entonces, zg = (15.2)(9.80665) = 149.1 J/kg De la tabla de vapor del apéndice A.2 en unidades SI, H1 a 18.33 “C = 76.97 kJ/kg, H2 para vapor sobrecalentado a 148.9 “C = 2771.4 kJ/kg, y H2 - H1 = 2771.4 - 76.97 = 2694.4 kJ/kg = 2.694 x lo6 Jlkg Al sustituir estos valores en la ecuación (2.7-21), Q = (149.1 - 0) + (41.77 - 1.115) + 2.694 x lo6 Q = 189.75 + 2.694 x lo6 = 2 6942 x lo6 Jlkg. Por consiguiente, los términos de energía cinética y de energía potencial que totalizan 189.75 J/kg son despreciables en comparación con lavariación de entalpía de 2.694 x lo6 J/kg. Este v, = 1.52 m/s 18.3 “C, 137.9 kPa FIGURA 2.7-q. Diagrama de flujo kl proceso para el ejemplo 2.7-I VaDor t vz = 9.14 mls 15.2 m 148.9 “C, 137.9 kPa L FIGURA 2.7-3. Diagrama de flujo del proceso del balance de energía para el ejemplo 2.7-2. 12 2.7 Balance global de energía valor de 189.75 J/kg elevaría la temperatura del agua líquida en 0.0453 “C, cantidad que es despreciable. EJEMPLO 2.7-2. Balance de energía en un sistema de flujo con bomba En un gran tanque aislado, a presión atmosférica, se está almacenando agua a 85 .O “C, como se muestra en la figura 2.7-3. El agua se está bombeando en estado estacionario desde este tanque en el punto 1 mediante una bomba con una velocidad de 0.567 m3/min. El motor que impulsa la bomba proporciona energía a una tasa de 7.45 kW. El agua pasa por un intercambiador de calor, donde cede 1408 kW de calor. El agua enfriada se conduce después aun gran tanque abierto en el punto 2, que está 20 m por encima del primer tanque. Calcule la temperatura final del agua que pasa al segundo tanque. Desprecie cualquier cambio de energía cinética, ya que las velocidades inicial y final en los tanques son esencialmente cero. Solución: En el apéndice A.2, tablas de vapor, se ve que H1 (85 “C) = 355.90 X lo3 J/kg, pt = 1 / 0. 0010325 = 968.5 kg/m3. Entonces, para el estado estacionario, ml = m2 = (0.567)(968.5)(+) = 9.152 kg/s Además, zl = 0 y z2 = 20 m. El trabajo realizado por el fluido es Ws, pero en este caso, el trabajo se realiza sobre el fluido y Ws es negativo. W, = - (7.45 x 103 J/s)(1/9.152 kg/s) = -0.8140 x lo3 Jikg El calor añadido al fluido también es negativo, ya que el fluido cede calor y es Q = - (1408 x lo3 J/s)(1/9.152 kg/s) = -153.8 x lo3 Jkg Si se establece que ( v: -vi)/ 2 = 0 y se sustituye en la ecuación (2.7-lo), H2 - 355.90 x lo3 + 0 + 9.80665 (20 - 0) = (-153.8 x 103) - (-0.814 x 103) Al resolver H2 = 202.71 x lo3 J/kg. En las tablas de vapor, esto corresponde a t2= 48.41 “C. Nótese que en este ejemplo Ws y g (~2 - zl) son muy pequeños comparados con Q. EJEMPLO 2.7-3. Balance de energía en un calorímetro de flujo Se esta usando un calorímetro de flujo para medir la entalpía de vapor. El calorímetro, que es una tubería horizontal aislada, consiste en un calentador eléctrico inmerso en un fluido que fluye en estado estacionario. En el punto 1 del calorímetro entra agua líquida a 0 “C a unavelocidad de 0.3964 kg/min. El líquido se vaporiza por completo por el calentador, donde se agregan 19.63 kW, y el vapor sale por el punto 2 a 250 “C y 150 kPa absolutos. Calcule la entalpía de salida H2 del vapor si la entalpía del líquido a 0 “C se establece arbitrariamente como 0. Los cambios de energía cinética son pequeños y pueden despreciarse. (Puede suponerse que la presión tiene un efecto despreciable sobre la entalpía del líquido). Solución: En este caso, Ws= 0 porque no hay trabajo de eje entre los puntos 1 y 2. Además, ($/21x -1$/201) = Oyg(z2-zl) = 0. Parael estado estacionario, ml= m2 = 0.3964/60 = 6.607 x 1c3 kg/s. Puesto que el calor se agrega al sistema, 19.63 kJ/s ’ = 6607 x 1O-3 kg/s = 2971 kJ/kg Cap. 2 Principios de transferencia de momento lineal y balances globales 75 Puesto que se considera que el líquido es incompresible, se aplica la ecuación (2.7-28) pr 68.9 x 1000_ - - = P 998 69.0 J/kg &_‘137*8x1000 =1380 J/kg P- 998 41 usar la ecuación (2.7-28) y despejar D, las pérdidas por fricción: Sustituyendo los valores conocidos y calculando las pérdidas por fricción: u = - (-155.4) + 0 - 29.9 + 69.0 - 138.0 = 56.5 J/kg (18.9 pie . lbf/lb,) EJEMPLO 2.7-5. Potencia de un motwparir üti ’,Tdeflrrio Una bomba que ope~~‘esq un régimen de 69.1 gal/mm extra una solución líquida con !“’ densidad t114.8 Ib, /pie3 de hn tanque de alma-0 que tiene una sección transversal considerable, por rJle$iodeqva de succión de 3.068 pulg de DI. La bomba descarga a través de una linea de 2.067 pulg’de DI a un tanque elevado abierto. El extremo final de la línea de descarga e&a5@pié~por encima del nivel del líquido en el tanque de alimentación. Las pérdidas por fricción en el sistema de tuberías son xF= 10.0 Ib-pie fuerzaAb masa. ¿Qué presión debe desarrollar la bomba y cuál deberá ser su potencia con una eficiencia del 65% (q = 0.65)? El flujo es turbulento. Solución: Primero se traza un diagrama de flujo del proceso (Fig. 2.7-5). Se usará la ecuación (2.7-28). El término Ws en la ecuación (2.7-28) se convierte en * w, = - q wp (2.7-30) donde - Ws= energía mecánica que la bomba suministra al fluido, esto es, trabajo mecánico neto, q = eficiencia fraccionaria y Wp = energía o trabajo axial suministrado a la bomba. .4 FIGURA 2.7-5. Diagrama de @jo del proceso para el ejemplo 2.7-5. 76 2.7 Balance global de energía Con los datos del apéndice A.5 se sabe que el área de sección transversal de la tubería de 3.068 pulg mide 0.05134 pie2 y la correspondiente a la de 2.067 pulg, 0.0233 pie2. La velocidad de flujo es velocidad de flujo = (69.1 $)(g)( 7~~~gal] = 0.1539 pie3/s v2 = (0.1539 @$)(,.023i pie2) = 6.61 pies/s Puesto que el tanque es muy grande, vt = 0. Por lo tanto, v:/2g, = 0. La presión pr = 1 atm y p2 = 1 atm. Además, a = 1 .O ya que el flujo es turbulento. Por consiguiente: p12&0 P P vi (6.61)2 _ o 678 pie. % 2g, - 2(32.174) - * Lbm Al usar el dato de referencia de zl = 0 se obtiene, z2 g = (50.0)=& = 50.0 9 c m Al aplicar la ecuación (2.4-28), despejando W, y sustituyendo los valores conocidos: = 0 - 50.0 + 0 - 0.678 + 0 - 1 0 pie. lbr = -60.678 r m Al usar la ecuación (2.7-30) y despejando Wp 60.678 pie. h _ g3.3pie. Ib, velocidad de flujo de masa = potencia de la bomba = = 3.00 hp Para calcular la presión a la que debe operar la bomba, la ecuación (2.7-28) se adapta con respecto a la propia bomba entre los puntos 3 y 4 como lo muestra el diagrama, v3 = (,,,,, $)[o.051~4 pie2 1 = 3.00 pies/s* v4 = v2 = 6.61 pie& Cap. 2 Principios de transferencia de momento lineal y balances globales Puesto que la diferencia de nivel entre z3 y z4 de la propia bomba es despreciable, puede rechazarse. Reescribiendo la ecuación (2.7-28) entre los puntos 3 y 4 y sustituyendo los valores conocidos (EF = 0 puesto que se trata del sistema de bombeo), p ie Ib, = 0 - 0 + 0.140 - 0.678 + 60.678 = 60.14 --jjy- (2.7-31) = 48.0 Ib fuerza/pulg2 (presión en lb/pulg2 abs desarrollada por la bomba) (331 k Pa) 2.76 Ecuación de Bernoulli para el balance de energía mecánica En el caso especial en que no se añade energía mecánica (W, = 0) y no hay fricción (% = 0), la ecuación (2.7-28) se convierte en la ecuación de Bernoulli, ecuación (2.7-32), para flujo turbulento, cuya importancia requiere explicaciones adicionales, zg+3+O=Z*g+!L+B 1 2 P 2 P (2.7-32) Esta ecuación cubre muchas situaciones de importancia práctica y se usa con frecuencia junto con la ecuación de balance de masa (2.6-2) para estado estacionario. m = h4v = ~24~~ Se considerarán varios ejemplos de su uso. EJEMPLO 2.7-6. Velocidad de flujo a partir de mediciones de presión Un líquido con densidad constante de,p kg/m3 fluye a velocidad desconocida vl m/s a través de una tubería horizontal cuya área de corte transversal es Al m2 y a presión pl N/m2, para después pasar a una sección de la tubería en la que el área se reduce gradualmente a A2 m2 y la presión es p2. Suponiendo que no hay pérdidas por fricción, calcule las velocidades vl y y con base en la medición de la diferencia de presión (pl-~2). Solución: En la figura 2.7-6 se muestra el diagrama de flujo con tomas de presión para medir las presiones p1 y p2 . Con base en la ecuación de continuidad de balance de masa (2.6-2) para una p constante, donde p1 = p2 = p. VI 4v2 =- A2 (2.7-33) 80 2.8 Balance general de momento lineal Puesto que p2 = p3 = 1 atm, v3 = 0 y 22 = 0, v2=&=.&F (2.7-45) 2.8 BALANCE GENERAL DE MOMENTO LINEAL 2.8A Derivación de la ecuación general Se puede escribir un balance de momento lineal para el volumen de control que se muestra en la figura 2.6-3, que es similar a la ecuación general de balance de masa. El momento lineal, en contraste con la masa y la energía, es una cantidad vectorial. El vector lineal total de momento lineal P de la masa total M de un fluido en movimiento con una velocidad v es P=Mv (2.8-l) El término Mv es el momento lineal de esta masa, Men movimiento, incluida en un instante dado dentro del volumen de control de la figura 2.6-4. Las unidades de Mv son kg * m/s en el sistema SI. A partir de la segunda ley de Newton, deduciremos la ecuación integral del balance de momento para un momento lineal. El momento angular no se va a considerar en esta parte, y la ley de Newton puede expresarse como: la velocidad de cambio de momento lineal de un sistema es igual a la suma de todas las fuerzas que actúan sobre dicho sistema y tiene lugar en la dirección de la fuerza neta resultante: (2.8-2) donde F es la fuerza. En el sistema SI, F se mide en newtons (N) y 1 N = 1 kg * m/s2. Nótese que en el sistema SI, g, no es necesario, aunque sí lo es en el sistema inglés. La ecuación para la conservación de momento lineal con respecto a un volumen de control puede escribirse como: suma de fuerzas actuando ) ( velocidad del momento lineal a la = _ sobre el volumen de control salida del volumen de control c (2.8-3) velocidad del momento lineal a la entrada del volumen de control velocidad de acumulación de momento lineal en el volumen de control Ésta es la misma forma de la ecuación general de balance de masa (2.6-3) con la suma de las fuerzas como término de rapidez de generación. .Por lo tanto, el momento lineal no se conserva ya que es generado por fuerzas externas al sistema. Si no existen fuerzas externas, sí hay conservación del momento lineal. Al usar el volumen de control general de la figura 2.6-4, se pueden evaluar los diversos términos de la ecuación (2.8-3) usando métodos muy similares al desarrollo del balance general de masa. Para un elemento pequeño de área dA en la superficie de control: velocidad de efusión de momento lineal = v(pv)(dA cos a) (2.8-4). Nótese que la velocidad de efusión de masa es (pv)(dA cos a). Obsérvese además que (dA cos a) es el área dA proyectada en dirección perpendicular al vector de velocidad v y que a es el ángulo Principios de transferencia de momento lineal y balances globales 8 1 entre dicho vector de velocidad y el vector perpendicular n en dirección al exterior. Con base en el álgebra vectorial, el producto de la ecuación (2.8-4) se convierte en v@v)(dA cos a) = pv(v * n)dA Al integrar entre los límites de la totalidad de la superficie de control A, (2.8-5) efusión neta de momento lineal desde el volumen de control v(pv)cosa dA=jJpv(v.n) dA A (2.8-6) La efusión neta representa los primeros dos términos del lado derecho de la ecuación (2.8-3). En forma análoga a la ecuación (2.6-5), lavelocidad de acumulación del momento lineal dentro del volumen de control V es velocidad de acumulación de momento lineal en el volumen de control pv dV (2.8-7) Al sustituir las ecuaciones (2.8-2), (2.8-6) y (2.8-7) en la (2.8-3), el balance global de momento lineal para un volumen de control resulta ser (2.843) Adviértase que, en general, CF puede tener un componente en cualquier dirección y F es la fuerza que los alrededores desarrollan sobre el fluido del volumen de control. Puesto que la ecuación (2.8-8) es una ecuación vectorial, podemos escribir las ecuaciones escalares componentes para las direcciones x, y y z. a v,pv cos a dA + Z PVX dV A V (SI) . (2.8-9) &T,= jjv,f-vcoscxdA+;jjjf v, dV (Unidades del sistema inglés) ZFy= ji c c avypv cos CY. dA + -G$ III Py dV cF,= ji V a vzpv coscxdA+Z IIIPz dV A V (2.8-10) (2.8-l 1) El término de fuerza CFX en 1 a ecuación (2.8-9) está constituido por la suma de varias fuerzas. Éstas se determinan como se indica a continuación: 1. Fuerza del cuerpo. La fuerza del cuerpo Fxg, que es la fuerza en la dirección x causada por la acción de la gravedad sobre la masa total M del volumen de control. Esta fuerza Fxg, es Mg,. Cuando la dirección x es horizontal, esa fuerza equivale a cero. 2. Fuerza de la presión. La fuerza Fxp es la fuerza en dirección x causada por las presiones que actúan sobre la superficie del sistema fluido. Cuando la superficie de control pasa a través del fluido, se considera que la presión se dirige hacia adentro y perpendicularmente a la superficie. 82 2.8 Balance general de momento lineal En algunos casos, parte de la superficie de control puede ser un sólido, y esta pared se incluye entonces dentro de la superficie de control. También existe una contribución a Fxp de la presión en el exterior de esa pared, que es comúnmente la presión atmosférica. Si se emplea presión manométrica, la integrd de la presión externa que es constante entre los límites de la totalidad de la superficie, puede despreciarse de manera automática. 3. Fuerza defiicción. Durante el flujo del fluido está presente una fuerza de fricción o cortante F,, en la dirección x, que desarrolla sobre el fluido una pared sólida cuando la superficie de control atraviesa el sistema entre el fluido y la pared sólida. En algunos casos, esta fuerza de fricción puede ser despreciable en comparación con las demás y no se toma en cuenta. 4. Fuerza de la superficie sólida. En los casos en que la superficie de control pasa por un sólido, esta presente una fuerza R,, que es el componente x de la resultante de las fuerzas que están actuando sobre el volumen de control en dichos puntos. Esto se presenta en casos típicos donde el volumen de control incluye una sección de una tubería, así como el fluido que transporta. Ésta es la fuerza ejercida por la superficie sólida sobre el fluido. Los términos de fuerza de la ecuación (2.8-9) pueden representarse como ZFx = Fxg + FxP -t F,, + R, (2.8-12) Pueden escribirse ecuaciones similares para las direcciones y y z. Entonces, la ecuación (2.8-9) se convierte, para la dirección x, en II a= v,pvcosadA+~ III PVX dV A V (2.8-13) 2.8B Balance global de momento lineal en un sistema de flujo en una dirección Un aplicación bastante común de la ecuación para el balance general de momento lineal es el caso de la sección de un dueto con, su eje en la dirección x. Se supone que el fluido fluye en estado estacionario dentro del volumen de control que se muestra en las figuras 2.6-3 y 2.8-l. Puesto que v = v,, la dirección x de la ecuación (2.8-13) se transforma en EFx = Fxg + FxP 1- F,, + R, = II v, pvx cos a dA (2.8-14) A Al integrar entre cos a = kl.0 y pA = mlvprom, 2( 1 2vx2 prom ( 1VXl ~~~ + FxP + F,, + R, = m - m prom Vx 2 pronI VXI pmm donde, si la velocidad no es constante y varía a lo largo del área superficial, (2.8-15) (2.8-16)
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved