Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Capítulo 4 ISOMERIA ISOMERIA ESPACIAL ISOMERIA DE CADEIA ISOMERIA D, Notas de estudo de Química

Descrição e definição dos tipos de isomeria, com exemplos bem explicativos. (o texto também não é meu, encontrei na internet e estou disponibilizando porque achei muito bom).

Tipologia: Notas de estudo

2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 28/03/2010

cristiane-colodel-8
cristiane-colodel-8 🇧🇷

4.8

(68)

61 documentos

Pré-visualização parcial do texto

Baixe Capítulo 4 ISOMERIA ISOMERIA ESPACIAL ISOMERIA DE CADEIA ISOMERIA D e outras Notas de estudo em PDF para Química, somente na Docsity! 94 Capítulo 4 ISOMERIA ISOMERIA ESPACIAL Isomeria espacial ou estereoisomeria é o caso de isomeria no qual os compostos isômeros não diferem entre si pelas suas fórmulas estruturais planas mas sim pelas suas fórmulas estruturais espaciais (fórmulas de Le Bel e Vant’Hoff). Para explicar a isomeria espacial surgiu a concepção da configuração tetraédrica do átomo de carbono. ISOMERIA DE CADEIA Isomeria de cadeia é o caso de isomeria plana na qual os compostos isômeros pertencem à mesma função química mas apresentam cadeias carbônicas diferentes. No caso de compostos cíclicos a isomeria de cadeia pode ser chamada isomeria de núcleo. A isomeria de cadeia aparece em todas as funções químicas. Exemplos: H3C H O CC H CH3 H3C C C C O H H2 H2 butanal: C4H8O metil propanal: C4H8O H3C C C C C O OH H2 H2 H2 H3C OH O CCC CH3 H H2 H3C CH3 C C O OH CH3 ácido pentanóico C5H10O2 ácido 2-metil butanóico C5H10O2 ácido dimetil propanóico C5H10O2 95 H2C CH2 CH2H2C H2C C C CH3 H H2 ciclobutano: C4H8 metil ciclopropano: C4H8 Nestes exemplos temos isômeros de núcleo. ISOMERIA DE POSIÇÃO Isomeria de posição é o caso de isomeria plana na qual os isômeros pertencem à mesma função química, apresentam a mesma cadeia carbônica, mas diferem entre si pela posição de um grupo funcional ou uma insaturação na cadeia carbônica. Exemplos: H3C C C C OH H CH3 H2 H2 H3C CH3CC OHH HCH3 H3C CH3 C C OH CH3 3-metil 1-butanol C4H10O 3-metil 2-butanol C4H10O H2 2-metil 2-butanol C4H10O OH OH OH OH OH OH C6H6O2 C6H6O2 C6H6O2 1-2-di-hidroxi benzeno ou (piro) catecol 1-3-di-hidroxi benzeno ou resorcinol 1-4-di-hidroxi benzeno ou hidroquinona 1-buteno C4H82-buteno C4H8 H2H H2C C C CH3 HH H3C C C CH3 98 opostos em relação ao plano determinado pela ligação pi chama-se TRANS. O ácido butenodióico cis é chamado ÁCIDO MALÊICO e o trans é chamado ÁCIDO FUMÁRICO. H HOOC COOH π C C H HHOOC COOH π C C H ÁCIDO BUTENODIÓICO CIS ÁCIDO BUTENODIÓICO TRANS ÁCIDO MALEICO ÁCIDO FUMÁRICO ácido butenodióico CIS Ácido maleico OH O H CC O H OH CC C C H C O H C OH O HO ácido butenodióico TRANS Ácido fumárico Outros exemplos: CIS TRANS 1-2-DICLOROETENO H C Cl CH Cl 1-2 dicloro eteno cis H C Cl CCl H 1-2 dicloro eteno trans 99 H3C C CH5C2 H H 2-penteno cis H3C C CH H C2H5 2-penteno trans H3C C H H O HC C aldeído crotônico cis H3C C H CH C H O aldeído crotônico trans trans (em relação ao H e Br) 1-bromo 1-cloro 1-propeno H3C C H CBr Cl H3C C H CBr Cl 1-bromo 1-cloro 1-propeno trans (em relação ao H e Br) Nem todos os compostos que apresentam dupla ligação entre átomos de carbono apresentam isômeros geométricos. Assim os compostos seguintes não têm isômeros geométricos ou cis-trans: C C H H Cl Cl 1-1-dicloro eteno C C CH3C H H H O metil propenal C C H3C CH3 Cl Br 1-bromo 1-cloro 2-metil 1-propeno Havendo dois átomos ou radicais iguais ligados ao mesmo átomo de carbono da dupla ligação, está eliminada a possibilidade de isomeria geométrica. Representando por a, b, c, e d os átomos ou radicais ligados aos átomos de carbono da dupla ligação: a) Compostos que não apresentam isômeros geométricos: a C a C aa a C a C bb a C a C cb 100 b) Compostos que apresentam isômeros geométricos: a C b C ba a C b C ca a C b C bc Os isômeros geométricos ou cis-trans de um composto diferem entre si nas suas constantes físicas (ponto de fusão, ponto de ebulição, densidade, solubilidade, etc.), e em certas propriedades químicas. Como exemplo de diferença de propriedade química entre o ácido fumárico e malêico, podemos citar a reação de desidratação por aquecimento. O ácido malêico facilmente dá o anidrido malêico: H C C O O H O CC O H H H C C O + H2O O CC O H ácido malêico anidrido malêico ∆ Não existe anidrido fumárico, o que se compreeende, pois, espacialmente é impossível fechar o ciclo estando os dois grupos carboxílicos em trans. Por aquecimento do ácido fumárico em condições enérgicas obtém-se o anidrido malêico (o ácido fumárico sofre uma transformação em ácido malêico e este se desidrata). 103 desaparecendo, assim, a possibilidade de isomeria. No caso do 1-2- dicloro ciclopropano, o fechamento do ciclo impede a livre rotação de um carbono em torno do outro, daí a possibilidade de isomeria geométrica. Considerando-se, por exemplo, todos os isômeros planos do penteno, os únicos que apresentam isômeros geométricos são o 2- penteno e o 1-2 dimetil ciclopropano. H3C C H CCH3C H H2 2-penteno cis H3C C H CH C CH3 H2 2-penteno trans H C H C C CH3 H H H3C 1-2-dimetil ciclo propano cis H C H C C H H CH3 H3C 1-2-dimetil ciclo propano trans Substâncias Opticamente Ativas Substâncias opticamente ativas são as que têm a propriedade de desviar o plano de vibração da luz polarizada. SUBS TÂNCIA ÓPTICAMENTE ATIVA DEXTRÓGIRA SUBS TÂNCIA ÓPTICAMENTE ATIVA LEVÓGIRA LUZ POLARIZADA LUZ POLARIZADA Substâncias dextrógiras são as que desviam o plano de vibração da luz polarizada para a direita. Substâncias levógiras são as que desviam o plano de vibração da luz polarizada para a esquerda. 104 A luz é uma modalidade de energia radiante, sendo que na luz natural as vibrações se dão em todos os planos que contém o eixo (xy) que representa a direção de propagação do raio luminoso. a yx b c d a b c d1 1 1 1 Admitindo-se que o raio luminoso atravesse perpendicularmente esta folha de papel (xy perpendicular ao plano representado pela folha de papel), na figura acima, aa1, bb1, cc1 e dd1 representam alguns dos infinitos planos de vibração do raio luminoso (esses planos são todos perpendiculares ao plano do papel e todos contém o eixo xy que representa a direção de propagação do raio luminoso). Luz polarizada é a luz cujas ondas vibram em um único plano (aa1 ou bb1 ou cc1 ou dd1, ou outro não assinalado na figura). Existem certas substâncias capazes de polarizar a luz; estas substâncias ao serem atravessadas pela luz natural deixam passar apenas as ondas que vibram num determinado plano e absorvem as demais; a luz ao sair destas substâncias está polarizada. Na prática pode-se obter luz polarizada fazendo a luz natural atravessar um prisma de Nicol (prisma construído colando-se dois cristais de calcita com bálsamo de Canadá). 105 LUZ NATURAL NICOL LUZ POLARIZADA A atividade óptica pode ser causada por: a) ASSIMETRIA CRISTALINA; b) ASSIMETRIA MOLECULAR. Em Química Orgânica só interessa a atividade óptica causada pela assimetria molecular. Quando a atividade óptica é causada pela assimetria cristalina, a substância só é opticamente ativa, quando no estado cristalizado (estado sólido); pela fusão da substância ou pela sua dissolução num líquido desaparece a atividade óptica. Como exemplo de cristais opticamente ativos, podemos mencionar o quartzo (SiO2), clorato de potássio (KCIO3), etc. Quando a atividade óptica é causada pela assimetria molecular a substância continua opticamente ativa mesmo no estado fundido e em solução. ISOMETRIA ÓPTICA Isomeria óptica é um caso de estereoisomeria que ocorre em compostos formados por MOLÉCULAS ASSIMÉTRICAS. O átomo de carbono que está ligado a quatro radicais diferentes entre si (a, b, c, d) chama-se carbono assimétrico (comumente representado por C*). Toda molécula que apresenta 1C* é assimétrica, e como tal, produz ao espelho plano uma imagem que não pode sobrepor ao objeto. A estas duas moléculas (objeto e imagem ao espelho plano) 108 se, facilmente, que a molécula do ácido piroúvico não é assimétrica e, como conseqüência, produz ao espelho plano, uma imagem que pode sobrepor-se ao objeto. H3C C* C OH OH O H ácido láctico  H3C C C OH O O oxidação ácido pirúvico C OH O OHH CH3 C OH O O CH3 C OH O H CH3 HO C OH O O CH3 ÁCIDO LÁCTICO d ÁCIDO LÁCTICO l ÁCIDO PIROÚVICO ÁCIDO PIROÚVICO OXIDAÇÃOOXIDAÇÃO ANTÍPODAS IGUAIS 109 Outro exemplo: fazendo-se reagir o 2-cloro butanol-2 dextrógiro ou levógiro com PCl5 obtém-se o 2-2-dicloro butano opticamente inativo pois “desaparece” o C* na reação química. PCl5H3C C* C2H5 Cl OH Cl Cl C2H5CH3C  2-cloro 2-butanol 2-2-dicloro butano PCl5 PCl5 CH3 C2H5 C2H5 CH3 Cl Cl Cl Cl 2-2 DICLOROBUTANO 2-2 DICLOROBUTANO  IGUAIS C2H5 C2H5 Cl ClOH CH3 CH3 HO  ANTÍPODAS 2-CLORO 2-BUTANOL d 2-CLORO 2-BUTANOL l Quando a partir de um composto que não apresente C*, obtém- se outro com C*, obtém-se o isômero racêmico (d, l), pois, a probabilidade de se formar o isômero dextrógiro é a mesma de se formar o isômero levógiro, e, na realidade, formam-se ambos em quantidades equimolares; obtém-se, assim, o isômero racêmico, que é opticamente inativo por compensação externa. Assim, por hidrogenação da butanona obtém-se o 2-butanol racêmico (d, l). 110 CH3  ANTÍPODAS CH3 HO OHH H O CH3 C2H5 C2H5C2H5 2-BUTANOL l2-BUTANOL d  2H 2H BUTANONA Outro exemplo: H3C C C CH3 + HI H3C C* C CH3 I H H H  H H 2-buteno 2-iôdo butano (d, l) Pela adição de HI ao 2-buteno obtém-se o 2-iodo butano racêmico (d, l) pois formam-se quantidades equimolares dos dois antípodas ópticos. 113 C C* C* C OO HO OH OH OH H H ácido tartárico Sendo α o ângulo de desvio do plano de vibração da luz polarizada produzido pelo C* teremos as seguintes possibilidades: +2α −2α d antípodas ópticos l +α +α −α −α iguais ópticamente inativos "MESO" 0 +α −α −α +α 0 Existem, portanto, 4 isômeros, dois opticamente ativos (dextrógiro e levógiro) e dois opticamente inativos; um destes é o racêmico (d,l) e o outro é o chamado MESO. O isômero racêmico é opticamente inativo por compensação externa, ou intermolecular, pois, é formado de quantidades equimolares dos dois antípodas ópticos (d e l); o isômero Meso é opticamente inativo por compensação interna, ou intramolecular (a compensação é dentro da própria molécula pois um dos C* é dextrógiro e o outro C* é levógiro). ácido d tartárico ácido l tartárico iguais ácido meso tartárico C O OH C O OH HO OHH H C O OH C O OH OHH OHH C O OH C O OH HO H HO H C O OH C O OH HO OHH H Pelo fato de a molécula do ácido meso tartárico apresentar um plano de simetria, a molécula-imagem no espelho plano é igual à molécula-objeto. Como o ácido meso tartárico é formado por moléculas 114 simétricas, é claro que é opticamente inativo, pois, a condição necessária para um composto orgânico ser opticamente ativo é a sua molécula ser assimétrica. Outro exemplo de composto orgânico com 2C* iguais: H C* Cl C C* H H OH Cl CH3H3C 2-4-dicloro 3-pentanol As fórmulas de projeção dos isômeros ópticos do composto acima são: d l d,l CH3 CH3 H Cl HO H H Cl CH3 CH3 H Cl Cl H H OH iguais MESO CH3 CH3 H Cl H H Cl OH CH3 CH3 Cl Cl HO H H H Nem toda molécula assimétrica apresenta C*; existem casos de assimetria molecular em compostos que não tem C*. Estes casos, porém, não serão estudados no momento. Diastereoisômeros são os isômeros ópticos não enantiomorfos entre si; só aparecem em compostos com mais de um átomo de carbono assimétrico na molécula. No caso de um composto com 2C* diferentes na molécula, o isômero d1 é enantiomorfo do isômero l1, e diastereoisômero dos isômeros d2 e l2; o isômero l1 é enantiomorfo do isômero d1, e diastereoisômero dos isômeros d2 e l2; o isômero d2 é enantiomorfo do 115 isômero l2, e diastereoisômero dos isômeros d1 e l1, o isômero l2 é enantiomorfo do isômero d2, e diastereoisômero dos isômeros d1 e l1. Dois antípodas ópticos de um composto apresentam as mesmas constantes físicas (P.F., P.E., densidade, etc.) e o mesmo comportamento químico. Diferem no sentido de rotação da luz polarizada. EXERCÍCIOS DE QUÍMICA ORGÂNICA I - ISOMERIA 1) Escreva os nomes e as fórmulas de pelo menos sete isômeros planos dos seguintes compostos: octano; hexeno 1; ácido pentanodióico, pentanodial, pentanol 1. 2) Explique o que é tautomeria. Todas as cetonas e aldeídos apresentam tautomeria? Represente os tautômeros dos seguintes compostos: hexanal, pentanona 2; pentanodial e hexanodiona 3,4. 3) Quais são as condições necessárias para um composto apresentar isomeria geométrica? Represente os isômeros geométricos dos seguintes compostos: 1,2 difenil eteno; 1,3 dibenzil ciclo pentano, 2 metil ciclo butanodiol 1,3. 4) Explique o que é luz natural e luz polarizada. 5) Como podemos polarizar a luz? 6) O que são substâncias oticamente ativas? 7) Explique o que você entende por “antípodas óticos”. 8) Quando as substâncias são oticamente ativas? 9) Explique o funcionamento do polarímetro. 10) O que é poder rotatório específico, e do que o mesmo depende? 11) Qual o ângulo lido no polarímetro, quando no mesmo é colocada uma solução de sacarose de concentração 250 g/litro, com uma espessura 118 aparecimento de 15 mol/litro do produto. Calcule Kc, as concentrações de cada espécie no equilíbrio, e o rendimento do processo. 9) A reação do 1,5 dibromo pentano com Mg/pó/éter forma um ciclano. Sabendo-se que a Kc deste equilíbrio vale 50, se utilizarmos inicialmente 10 mol/litro do dihaleto com 15 mol/litro de Mg, quais as concentrações das espécies, no equilíbrio? 10) Se a este equilíbrio adicionarmos mais 3 mol/litro de Mg, quais serão as novas concentrações das espécies, no novo equilíbrio? 11) Numa certa experiência, foi feita a dinitração do 1,3 dimetil ciclo pentano, havendo formação de 2 produtos. Quando utilizamos 10 mol/litro de cada reagente, verificamos o aparecimento de 3 mol/litro do composto orgânico. Calcular Kc, as concentrações de todas as espécies presentes no equilíbrio e o rendimento do processo. 12) Ao reagirmos cloro (luz/calor) com o 1,3 dietil ciclo hexano, obtemos um produto mono clorado e outra espécie química. Num certo procedimento, num reator de 25 litros, colocamos a reagir 30 Kg do ciclano com 35 Kg de cloro, sendo que após um certo tempo, o sistema entrou em equilíbrio, onde Kc=100. Pede-se: a - O mecanismo b - As concentrações de todas as espécies no equilíbrio c - O rendimento do processo 13) A reação do propil ciclo propano com mistura sulfonítrica forma um composto de função mista “nitro-álcool”. Pois bem, numa primeira experiência, colocamos um reator de 100 litros, 50 mol de cada um dos reagentes (ciclano e ácido nítrico), sendo que após ter se estabelecido o primeiro equilíbrio, verificou-se o aparecimento de 10 mol do produto. 119 14) Com esses dados, calcule Kc e as concentrações de todas as espécies no equilíbrio. 15) Numa segunda experiência, e na mesma T, adicionou-se a esse equilíbrio, MAIS 5 mol do ciclano. Nestas condições, o sistema voltou a reagir, formando MAIS produto. Calcule as concentrações das espécies no novo equilíbrio, e o R nas 2 experiências. 16) A reação do propil ciclo butano com oleum, forma um composto de função mista “álcool-ácido sulfônico”, com rendimento de 88%. Esse composto foi em seguida colocado a reagir com solução concentrada de soda cáustica formando uma espécie com propriedades detergentes, que é comercializada sob a forma de uma solução aquosa a 9% (d=1,045 g/ml), em frascos de 1000 ml. Para a fabricação de 75000 frascos contendo este detergente, pede-se: a - O mecanismo do processo b - As massas das espécies envolvidas c - A massa do oleum necessária (22% de trióxido de enxofre) d - O volume de solução 13 N de base necessário 17) A reação do 1,5 dibromo; 2 metil hexano com Mg/pó/éter forma um ciclano X com rendimento de 89%. Numa segunda experiência, este ciclano X foi posto a reagir com mistura sulfonítrica, originando um composto Y com E=80%. Para a obtenção de 2000 Kg do composto dinitrado, pede-se: a - Os mecanismos b - As massas de todas as espécies químicas envolvidas 120 Solução dos Exercícios nos 1, 2, 4, 5 e 8 1) 1,4 dimetil, 2 etil Ciclo Pentano C C C C C C C + Mg Mg Cl2 +  Cl Cl      éter     2+ C C C C C C C C C 2) C C C C C C C + Zn Zn Br2 + Et  Br Br      éter 2+    C C C CC C C C C 1 metil, 2 etil ciclo hexano 3) ∆ C C C C C C + H2 Et C C C C C CH2 C CH2   Pt cat   * Mecanismo H H   Pt  Pt   + Pt Pt  H  H      colisão     colisão   R R  H H + C C       + CH2 CH2 Pt Pt     Pt Pt  
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved