Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Instalações hidráulicas , Notas de estudo de Hidráulica

Instalações hidráulicas prediais de água fria

Tipologia: Notas de estudo

2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 30/01/2010

robson-martins-de-moraes-7
robson-martins-de-moraes-7 🇧🇷

4.6

(13)

30 documentos

Pré-visualização parcial do texto

Baixe Instalações hidráulicas e outras Notas de estudo em PDF para Hidráulica, somente na Docsity! “INSTALAÇÕES PREDIAIS DE ÁGUA FRIA Profº. Marco Antônio Penalva Reali Engº. Rodrigo Braga Moruzzi Engº Aurélio Pessôa Picanço Enga. Karina Querne de Carvalho São Carlos, Agosto / 2002 S U M Á R I O 1 2 – OBJETIVOS DE UMA INSTALAÇÃO PREDIAL DE ÁGUA FRIA........... 4 2 3 – ETAPAS DE PROJETO................................................................................... 4 3 4 – SISTEMAS DE DISTRIBUIÇÃO................................................................... 6 3.1 4.1 – Sistema de Distribuição Direta......................................................... 6 3.1.1 4.1.1 – Vantagens........................................................................... 6 3.1.2 4.1.2 – Desvantagens..................................................................... 7 3.2 4.2 – Sistema de Distribuição Indireta................................................................... 7 3.2.1 4.2.1 – Distribuição por Gravidade................................................ 7 3.2.2 4.2.2 – Distribuição por Sistema Hidropneumático....................... 8 3.2.2.1 4.2.2.1 – Introdução....................................................................... 8 3.2.2.2 4.2.2.2 – Considerações sobre o Sistema Hidropneumático.......... 8 3.2.3 4.2.3 – Vantagens dos Sistemas de Distribuição Indireta.............. 10 3.2.4 4.2.4 – Desvantagens..................................................................... 10 3.3 4.3 – Sistema Misto................................................................................................ 10 4 5 – PARTES CONSTITUINTES DE UMA INSTALAÇÃO PREDIAL DE ÁGUA FRIA.................................................................................................................................. 11 4.1 5.1 – Alimentador predial.......................................................................... 11 4.2 5.2 – Aparelho sanitário............................................................................. 11 4.3 5.3 – Automático de bóia........................................................................... 12 4.4 5.4 - Barrilete............................................................................................. 12 4.5 5.5 – Caixa de descarga............................................................................. 12 4.6 5.6 – Caixa ou válvula redutora de pressão............................................... 12 4.7 5.7 – Coluna de distribuição...................................................................... 12 4.8 5.8 – Conjunto elevatório........................................................................... 12 4.9 5.9 – Consumo diário................................................................................. 12 4.10 5.10 – Dispositivo antivibratório............................................................... 12 4.11 5.11 – Extravasor....................................................................................... 12 4.12 5.12 - Inspeção........................................................................................... 13 4.13 5.13 – Instalação elevatória....................................................................... 13 4.14 5.14 – Instalação hidropneumática............................................................ 13 4.15 5.15 – Instalação predial de água fria........................................................ 13 4.16 5.16 – Interconexão.................................................................................... 13 4.17 5.17 – Ligação de aparelho sanitário......................................................... 13 4.18 5.18 – Limitador de vazão......................................................................... 13 4.19 5.19 – Nível operacional............................................................................ 13 4.20 5.20 – Nível de transbordamento............................................................... 13 4.21 5.21 – Quebrador de vácuo........................................................................ 13 4.22 5.22 – Peça de utilização............................................................................ 14 4.23 5.23 – Ponto de utilização (da água).......................................................... 14 4.24 5.24 – Pressão de serviço........................................................................... 14 Basicamente, podem-se considerar três etapas na realização de um projeto de instalações prediais de água fria: concepção do projeto, determinação de vazões e dimensionamento. A concepção é a etapa mais importante do projeto e é nesta fase que devem ser definidos: o tipo do prédio e sua utilização, sua capacidade atual e futura, o tipo de sistema de abastecimento, os pontos de utilização, o sistema de distribuição, a localização dos reservatórios, canalizações e aparelhos. A etapa seguinte consiste na determinação das vazões das canalizações constituintes do sistema, que é feita através de dados e tabelas da Norma, assim como na determinação das necessidades de reservação e capacidade dos equipamentos. No projeto das instalações prediais de água fria devem ser consideradas as necessidades no que couber, do projeto de instalação de água para proteção e combate a incêndios. O dimensionamento das canalizações é realizado utilizando-se dos fundamentos básicos da Hidráulica. O desenvolvimento do projeto das instalações prediais de água fria deve ser conduzido concomitantemente, e em conjunto (ou em equipe de projeto), com os projetos de arquitetura, estruturas e de fundações do edifício, de modo que se consiga a mais perfeita harmonia entre todas as exigências técnico-econômicas envolvidas. Os equipamentos e reservatórios devem ser adequadamente localizados tendo em vista as suas características funcionais, a saber: a) espaço; b) iluminação; c) ventilação; d) proteção sanitária; e) operação e manutenção. Só é permitida a localização de tubulações solidárias à estrutura se não forem prejudicadas pelos esforços ou deformações próprias dessa estrutura. As passagens através da estrutura devem ser previstas e aprovadas por seu projetista. Tais passagens devem ser projetadas de modo a permitir a montagem e desmontagem das tubulações em qualquer ocasião. Indica-se, como a melhor solução para a localização das tubulações, a sua total independência das estruturas e das alvenarias. Nesse caso devem ser previstos espaços livres, verticais e horizontais, para sua passagem, com aberturas para inspeções e substituições, podendo ser empregados forros ou paredes falsas para escondê-las. Segundo a NBR 5626 (1) o projeto das instalações prediais de água fria compreende memorial descritivo e justificativo, cálculos, norma de execução, especificações dos materiais e equipamentos a serem utilizados, e a todas as plantas, esquemas hidráulicos, desenhos isométricos e outros além dos detalhes que se fizerem necessários ao perfeito entendimento dos elementos projetados; deve compreender também todos os detalhes construtivos importantes tendo em vista garantir o cumprimento na execução de todas as suas prescrições. Poderão ou não constar, dependendo de acordo prévio entre os interessados, as relações de materiais e equipamentos necessários à instalação. 4 – SISTEMAS DE DISTRIBUIÇÃO 4.1 – Sistema de Distribuição Direta Através deste sistema, a alimentação dos aparelhos, torneiras e peças da instalação predial é feita diretamente através da rede de distribuição, conforme mostra a Figura 1. Figura - Abastecimento direto 4.1.1 – Vantagens • Água de melhor qualidade devido a presença de cloro residual na rede de distribuição • Maior pressão disponível devido a pressão mínima de projeto em redes de distribuição pública ser da ordem de 15 m.c.a. • Menor custo da instalação, não havendo necessidade de reservatórios, bombas, registros de bóia, etc. 4.1.2 – Desvantagens • Falta de água no caso de interrupção no sistema de abastecimento ou de distribuição; • Grandes variações de pressão ao longo do dia devido aos picos de maior ou de menor consumo na rede pública; • Pressões elevadas em prédios situados nos pontos baixos da cidade; • Limitação da vazão, não havendo a possibilidade de instalação de válvulas de descarga devido ao pequeno diâmetro das ligações domiciliares empregadas pelos serviços de abastecimento público; • Possíveis golpes de aríete; • Maior consumo (maior pressão); 4.2 – Sistema de Distribuição Indireta A alimentação dos aparelhos, das torneiras e peças da instalação é feita por meio de reservatórios. Há duas possibilidades: por gravidade e hidropneumático. 4.2.1 – Distribuição por Gravidade A distribuição é feita através de um reservatório superior que por sua vez é alimentado, diretamente pela rede pública ou por um reservatório inferior, conforme mostra a Figura 2. Figura - Abastecimento indireto por gravidade Figura - Variação do nível de água no tanque de pressão 4.2.3 – Vantagens dos Sistemas de Distribuição Indireta • Fornecimento de água de forma contínua, pois em caso de interrupções no fornecimento, tem-se um volume de água assegurado no reservatório; • Pequenas variações de pressão nos aparelhos ao longo do dia; • Permite a instalação de válvula de descarga; • Golpe de aríete desprezível; • Menor consumo que no sistema de abastecimento direto. 4.2.4 – Desvantagens • Possível contaminação da água reservada devido à deposição de lodo no fundo dos reservatórios e à introdução de materiais indesejáveis nos mesmos; • Menores pressões, no caso da impossibilidade da elevação do reservatório; • Maior custo da instalação devido a necessidade de reservatórios, registros de bóia e outros acessórios. 4.3 – Sistema Misto Parte da instalação é alimentada diretamente pela rede de distribuição e parte indiretamente. Vantagens: • Água de melhor qualidade devido ao abastecimento direto em torneiras para filtro, pia e cozinha e bebedouros; • Fornecimento de água de forma contínua no caso de interrupções no sistema de abastecimento ou de distribuição; • Permite a instalação de válvula de descarga. Observação: Geralmente em residências, sobrados, as pias de cozinha, lavatórios, chuveiros, têm duas torneiras: uma delas, abastecida pela rede pública e a outra, pelo reservatório. IMPORTANTE: A Norma recomenda como mais conveniente, para as condições médias brasileiras, o sistema de distribuição indireta por gravidade, admitindo o sistema misto (indireto por gravidade com direto) desde que apenas alguns pontos de utilização, como torneira de jardim, torneiras de pias de cozinha e de tanques, situados no pavimento térreo, sejam abastecidos no sistema direto. A utilização dos sistemas de distribuição direta ou indireta hidropneumática deve ser convenientemente justificada. Figura – Sistema misto de distribuição (Fonte: MACINTYRE, 1996) 5 – PARTES CONSTITUINTES DE UMA INSTALAÇÃO PREDIAL DE ÁGUA FRIA Antes de se enumerar as diversas partes contribuintes de uma instalação de água fria, apresenta-se a seguir algumas definições extraídas da NBR 5626 (1), que são necessárias à compreensão dos textos que se seguem. Definições De acordo com a Norma são adotadas definições de 5.1 a 5.53. 5.1 – Alimentador predial Tubulação que liga a fonte de abastecimento a um reservatório de água de uso doméstico. 5.2 – Aparelho sanitário Aparelho destinado ao uso de água para fins higiênicos ou para receber dejetos e/ou águas servidas. Inclui-se nesta definição aparelhos como bacias sanitárias, lavatórios, pias e outros, e, também, lavadoras de roupa e pratos, banheiras de hidromassagem, etc. 5.3 – Automático de bóia Dispositivo instalado no interior de um reservatório para permitir o funcionamento automático da instalação elevatória entre seus níveis operacionais e extremos. 5.4 - Barrilete Conjunto de tubulações que se origina no reservatório e do qual se derivam as colunas de distribuição, quando o tipo de abastecimento adotado é indireto. 5.5 – Caixa de descarga Dispositivo colocado acima, acoplado ou integrado às bacias sanitárias ou mictórios, destinados a reservação de água para suas limpezas. 5.6 – Caixa ou válvula redutora de pressão Caixa destinada a reduzir a pressão nas colunas de distribuição. 5.7 – Coluna de distribuição Tubulação derivada do barrilete e destinada a alimentar ramais 5.8 – Conjunto elevatório Sistema para elevação de água. 5.9 – Consumo diário Valor médio de água consumida num período de 24 horas em decorrência de todos os usos do edifício no período. 5.10 – Dispositivo antivibratório Dispositivo instalado em conjuntos elevatórios para reduzir vibrações e ruídos e evitar sua transmissão. 5.11 – Extravasor Tubulação destinada a escoar os eventuais excessos de água dos reservatórios e das caixas de descarga. 5.31 – Registro de utilização Componente instalado na tubulação e destinado a controlar a vazão da água utilizada. Geralmente empregam-se registros de pressão ou válvula-globo em sub-ramais. 5.32 – Regulador de vazão Aparelho intercalado numa tubulação para manter constante sua vazão, qualquer que seja a pressão a montante. 5.33 – Reservatório hidropneumático Reservatório para ar e água destinado a manter sob pressão a rede de distribuição predial. 5.34 – Reservatório inferior Reservatório intercalado entre o alimentador predial e a instalação elevatória, destinada a reservar água e a funcionar como poço de sucção da instalação elevatória. 5.35 – Reservatório superior Reservatório ligado ao alimentador predial ou a tubulação de recalque, destinado a alimentar a rede predial ou a tubulação de recalque, destinado a alimentar a rede predial de distribuição. 5.36 - Retrossifonagem Refluxo de água usada, proveniente de um reservatório, aparelho sanitário ou qualquer outro recipiente, para o interior de uma tubulação, em decorrência de pressões inferiores à atmosférica. 5.37 – Separação atmosférica Distância vertical, sem obstáculos e através da atmosfera, entre a saída da água da peça de utilização e o nível de transbordamento dos aparelhos sanitários, caixas de descarga e reservatórios. 5.38 – Sistema de abastecimento Rede pública ou qualquer sistema particular de água que abasteça a instalação predial. 5.39 – Sobrepressão de fechamento Maior acréscimo de pressão que se verifica na pressão estática durante e logo após o fechamento de uma peça de utilização. 5.40 – Subpressão de abertura Maior acréscimo de pressão que se verifica na pressão estática logo após a abertura de uma peça de utilização. 5.41 – Sub-ramal Tubulação que liga o ramal à peça de utilização ou à ligação do aparelho sanitário. 5.42 – Torneira de bóia Válvula com bóia destinada a interromper a entrada de água nos reservatórios e caixas de descarga quando se atinge o nível operacional máximo previsto. 5.43 – Trecho Comprimento de tubulação entre duas derivações ou entre uma derivação e a última conexão da coluna de distribuição. 5.44 – Tubo de descarga Tubo que liga a válvula ou caixa de descarga à bacia sanitária ou mictório. 5.45 – Tubo ventilador Tubulação destinada a entrada de ar em tubulações para evitar subpressões nesses condutos. 5.46 – Tubulação de limpeza Tubulação destinada ao esvaziamento do reservatório para permitir a sua manutenção e limpeza. 5.47 – Tubulação de recalque Tubulação compreendida entre o orifício de saída da bomba e o ponto de descarga no reservatório de distribuição. 5.48 – Tubulação de sucção Tubulação compreendida entre o ponto de tomada no reservatório inferior e o orifício de entrada da bomba. 5.49 – Válvula de descarga Válvula de acionamento manual ou automático, instalada no sub- ramal de alimentação de bacias sanitárias ou de mictórios, destinada a permitir a utilização da água para suas limpezas. 5.50 – Válvula de escoamento unidirecional Válvula que permite o escoamento em uma única direção. 5.51 – Válvula redutora de pressão Válvula que mantém a jusante uma pressão estabelecida, qualquer que seja a pressão dinâmica a montante. 5.52 – Vazão de regime Vazão obtida em uma peça de utilização quando instalada e regulada para as condições normais de operação. 5.53 – Volume de descarga Volume que uma válvula ou caixa de descarga deve fornecer para promover a perfeita limpeza de uma bacia sanitária ou mictório. A Figura 7 mostra as principais partes constituintes de uma instalação predial de água fria e apresenta também a nomenclatura e terminologia correspondentes. As Figuras 8 e 9 mostram, respectivamente, a planta baixa, isométrica e corte de uma instalação de água fria no interior de um compartimento sanitário. A título de ilustração foi inserido junto à Figura 9, um quadro (ver Tabela 1) relacionando as peças e suas quantidades, o qual deve fazer parte integrante desses isométricos num projeto deste tipo. Figura – Partes constituintes de uma instalação predial Figura - Planta baixa de um banheiro. Figura - Isométrico do banheiro Tabela - Lista de Peças No DESCRIÇÃO Quantidade 1 2 3 4 5 6 7 8 9 Tê de redução 90o soldável 50 x 25 mm Adaptador soldável curto com bolsa e rosca para registro 25 x ¾” Joelho 90o soldável 25 mm Tê 90o soldável 25 mm Tê 90o soldável 25 mm Adaptador soldável curto com bolsa e rosca para registro 25 mm x ¾ Tê 90o soldável 25 mm Luva soldável e com rosca 25 mm x ¾” Joelho 90o soldável 25 mm 1 2 1 1 1 1 1 1 1 1 ¼” 1 ½” 2” 2 ½” 3” 4” 40 50 60 75 85 110 2,4 3,0 3,3 4,2 4,7 6,1 42 48 60 75 88 113 3,6 4,0 4,6 5,5 6,2 7,6 Atualmente são fabricados dois tipos de válvulas de descargas que permitem minimizar o problema do golpe de aríete por elas produzidas: • Com fechamento gradativo: modifica-se a manobra de fechamento, fazendo-se com que o fluxo de água ocorra paulatinamente durante o tempo de funcionamento da válvula. • Fechamento lento: aumenta-se o tempo de funcionamento da válvula, havendo um acréscimo no consumo. As caixas de descargas, principalmente as acopladas aos vasos, tem sido muito empregadas em lugar de válvulas de descarga, por apresentarem as seguintes vantagens: requerem diâmetros menores de tubulação, inexistência de problemas de pressões (golpes) e economia de construção. 6.2 - Velocidades As tubulações devem ser dimensionadas de modo que a velocidade da água, em qualquer trecho de tubulação, não atinja valores superiores a 3,0 m/s. 7 – ESTIMATIVA DO CONSUMO DIÁRIO (CD) A Tabela 3 fornece dados que possibilitam a estimativa do consumo diário de qualquer tipo de edificação. Tabela – Estimativa de Consumo diário(*) PRÉDIO CONSUMO LITROS/DIA Alojamentos provisórios Ambulatórios Apartamentos Casas populares ou rurais Cavalariças 80 per capita 25 per capita 200 per capita 120 a 150 per capita 100 por cavalo Cinemas e Teatros Creches Edifícios públicos ou comerciais Escolas – externatos Escolas – internatos Escolas – semi-internatos Escritórios Garagens Hotéis (s/cozinha e s/lavanderia) Hotéis (c/cozinha e lavanderia) Jardins Lavanderias Matadouros-Animais de grande porte Matadouros-Animais de pequeno porte Mercados Oficina de costura Orfanatos, asilos, berçários Postos de serviço p/ automóveis Quartéis Residências Restaurantes e similares Templos 2 por lugar 50 per capita 50 a 80 per capita 50 per capita 150 per capita 100 per capita 50 per capita 100 por automóvel 120 por hóspede 250 a 350 por hóspede 1,5 por m2 30 por kg de roupa seca 300 por cabeça abatida 150 por cabeça abatida 5 por m de área 50 per capita 150 per capita 150 por veículo 150 per capita 150 per capita 25 por refeição 2 por lugar (*) Os valores citados são estimativos, devendo ser definido o valor adequado a cada projeto. Por exemplo, o CD de um prédio residencial constituído de 10 pavimentos tipo, contendo 3 apartamentos por pavimento e 5 pessoas por apartamento, é: CD = 10 pav. x 3 apto./pav. x 5 hab./apto. x 200 1/dia hab. CD = 30.000 l/dia ou simplesmente CD 30.000 l ou CD = 30 m3 O valor de 200 l/dia pessoa é obtido na Tabela 3. 8 – RAMAL PREDIAL De um modo geral, o diâmetro do ramal predial é fixado pela Concessionária de água local. A Norma prevê dois casos para que se possa determinar a vazão do ramal predial: quando se tem distribuição direta, a vazão do ramal é dada por: Q = C onde: Q é em l/s C é o coeficiente de descarga = 0,30 l/s P é a soma dos pesos correspondentes a todas as peças de utilização alimentadas através do trecho considerado (ver Tabela 6, extraída da NBR 5626) Quando se tem distribuição indireta a Norma admite que a alimentação seja feita continuamente, durante 24 horas do dia e a vazão é dada pela expressão: Onde: Q é em l/s CD é em l/dia Uma vez conhecida a vazão do ramal predial, tanto no caso de distribuição direta ou indireta, o serviço de água deverá ser consultado para a fixação do diâmetro. Geralmente, na prática, adota-se, para o ramal predial, uma velocidade igual a 0,6 m/s, de tal modo a resultar um diâmetro que possa garantir o abastecimento do reservatório mesmo nas horas de maior consumo. 8.1 – Ligação do Alimentador Predial As ligações do ramal predial e medidores (hidrômetros) são estudados com bastante propriedade por Nogami (1978) e apresentam-se aqui muitas de suas observações e ilustrações. A ligação do ramal predial à rede pública de abastecimento pode ser efetuada através de três tipos de tomadas: • direta • com colar • com ferrule No sistema com tomada direta, o ramal predial é ligado diretamente na tubulação distribuidora através de uma conexão (curva) que é rosqueada na mesma. Esse tipo de tomada só é utilizado em 10 - RESERVAÇÃO 10.1 – Influência dos Reservatórios Domiciliares na Qualidade da Água Os reservatórios domiciliares têm sido, comumente utilizados para compensar a falta de água na rede pública, resultante de falhas no funcionamento do sistema de abastecimento ou de programação da distribuição. É evidente que se o fornecimento de água fosse constante e adequado, não haveria a necessidade do uso desses dispositivos. Os principais inconvenientes do uso dos reservatórios domiciliares são de ordem higiênica, por facilidade de contaminação, do custo adicional e complicações na rede predial e devido ao possível desperdício de água durante a ausência do usuário. As conseqüências da existência dos reservatórios são mais graves para os usuários que se localizam próximos de locais específicos da rede de distribuição, como pontas de rede, onde, em geral, a concentração de cloro residual é às vezes inexistente. Em trabalhos realizados com o fim específico de verificar a influência dos reservatórios domiciliares das águas de abastecimento, Lima Filho e Murgel Branco (3) concluíram que as condições sanitárias em que encontram os mesmos são normalmente responsáveis pela deterioração da qualidade da água. Em geral, a localização imprópria do reservatório, a ignorância do usuário em relação à conservação do reservatório, a falta de cobertura adequada e a ausência de limpezas periódicas são os principais fatores que contribuem para a alteração da qualidade da água. A existência de uma camada de matéria orgânica e inorgânica no fundo do reservatório provoca um aumento da turbidez e cor, é responsável pelo consumo da maior parte do cloro residual da água afluente e acarreta a diminuição do oxigênio dissolvido. 10.2 – Capacidade e Recomendações A NBR 5626 (1) recomenda que a reservação total a ser acumulada nos reservatórios inferiores e superiores não deve ser inferior ao consumo diário e não deve ultrapassar a três vezes o mesmo. Os reservatórios com capacidade superior a 1000L devem ser compartimentados a fim de que o sistema de distribuição não seja interrompido durante uma operação de limpeza, pois ao se levar um compartimento, o outro garantirá o funcionamento da instalação. Geralmente é recomendável a seguinte divisão de volume entre os reservatórios superior e inferior: • volume útil do R.S. = 40% do volume total • volume útil do R.I. = 60% do volume total Essa divisão é válida quando o volume total a ser armazenado for igual ao CD. Quando se pretender armazenar um volume maior que o CD, ele deve ser feito no R.I. Seja, por exemplo, um edifício de apartamentos em que o CD é de 100 m3 e o volume total a ser armazenado é de 1,5 CD. • Volume do R.I. VRI = 0,6 x 100 + 50 = 110 m3 • Volume do R.S. VRS = 0,4 x 100 = 40 m3 Quando for instalado um reservatório hidropneumático não se deve considerar no cálculo da reservação total o volume desse reservatório, devendo o reservatório inferior Ter capacidade mínima igual ao CD. A reserva para combate a incêndios pode ser feita nos mesmos reservatórios da instalação predial de água fria, porém, à capacidade para esta finalidade devem ser acrescidos os volumes referentes ao consumo. A função do reservatório inferior é armazenar uma parte da água destinada ao abastecimento e deve existir quando: • O reservatório superior não puder ser abastecido diretamente pelo ramal alimentador. • O volume total a ser armazenado no reservatório superior for muito grande (principalmente em prédios de apartamentos). O reservatório superior deve ter capacidade adequada para atuar como regulador de distribuição e é alimentado por uma instalação elevatória ou diretamente pelo alimentador predial. A vazão de dimensionamento da instalação elevatória e a vazão de dimensionamento do barrilete e colunas de distribuição são aquelas que devem ser consideradas no dimensionamento do reservatório superior. Os reservatórios devem ser construídos com materiais de qualidade comprovada e estanque. Os materiais empregados na sua construção e impermeabilização não devem transmitir à água, substâncias que possam poluí-la. Devem ser construídos de tal forma que não possam servir de pontos de drenagem de águas residuárias ou estagnadas em sua volta. A superfície superior externa deve ser impermeabilizada e dotada de declividade mínima de 1:100 no sentido das bordas. Devem ser providos de abertura convenientemente localizada que permita o fácil acesso ao seu interior para inspeção e limpeza, e dotados de rebordos com altura mínima de 0,05 m. Essa abertura deverá ser fechada com tampa que evite a entrada de insetos e outros animais e/ou de água externa. 10.3 – Detalhes dos Reservatórios As figuras 16,17,18 e 19 mostram detalhes dos reservatórios inferior e superior. Figura - Planta de um reservatório inferior Figura - Corte de um reservatório inferior Figura - Detalhes de um reservatório superior Figura - Corte de um reservatório superior 10.4 – Canalização de Descarga dos Reservatórios O diâmetro da canalização de descarga dos reservatórios é determinado através da expressão: A – área em planta de um compartimento (m2) t – tempo de esvaziamento ( 2 h) h – altura inicial de água (m) S – seção do conduto de descarga (m2) (CV) até 2 2 – 5 5 – 10 10 – 20 20 (%) 50 30 20 15 10 11.1 – Sistema de comando da bomba A instalação elétrica de bombeamento deverá permitir o funcionamento automático da bomba e, eventualmente, a operação de comando manual direto. O comando automático é realizado com dispositivos conhecidos por automáticos de bóia, ou por controle automático de nível. Instala-se um automático de bóia superior e um inferior, a bomba será comandada pelo automático do reservatório superior (Figura 22). Caso o nível no reservatório inferior atinja uma situação abaixo da qual possa vir a ficar comprometida a aspiração, pela entrada de ar no tubo de aspiração, o automático inferior deverá desligar a bomba, muito embora não tenha ainda atingido o nível desejado no reservatório superior. No reservatório superior o comando bóia pode ficar em uma das câmaras, com cabo suficiente para ser instalado na outra câmara se necessário, pois as duas câmaras funcionam como vasos comunicantes, isto é, o nível da água é o mesmo nas duas câmaras, por isso, o comando pode estar numa das câmaras. Figura – Esquema de instalação de bombas para um prédio com reservatório inferior e superior (Fonte: MACINTYRE, 1996) 12 – BARRILETE OU COLAR DE DISTRIBUIÇÃO (MANIFOLD) Trata-se de uma tubulação ligando as duas seções do reservatório superior, e da qual partem as derivações correspondentes às diversas colunas de alimentação. O barrilete é a solução que adota para se limitarem as ligações ao reservatório. O traçado barrilete depende exclusivamente da localização das colunas de distribuição. Estas por sua vez, devem ser localizadas de comum acordo com a equipe envolvida no projeto global do edifício (arquiteto, engenheiro do cálculo estrutural, etc.). São duas as opções no projeto do barrilete. • Utilizar o sistema unificado ou central; • Utilizar o sistema ramificado. 12.1 - Sistema Unificado Do barrilete ligando as duas seções do reservatório partem diretamente todas as ramificações, correspondendo cada qual a uma coluna de alimentação. Colocam-se dois registros que permitem isolar uma ou outra seção do reservatório. Cada ramificação para a coluna correspondente tem seu registro próprio. Deste modo, o controle e a manobra de abastecimento, bem como o isolamento das diversas colunas, são feitos num único local da cobertura. Se o número de colunas for muito grande, prolonga-se o barrilete além dos pontos de inserção no reservatório (Figura 23). Figura – Barriletes Unificados (Fonte: MACINTYRE, 1996) 12.2 – Sistema ramificado Do barrilete saem ramais, os quais por sua vez dão origem a derivações secundárias para as colunas de alimentação. Ainda neste caso, na parte superior da coluna, ou no ramal do barrilete próximo à descida da coluna, coloca-se um registro (Figura 24). Esse sistema usado por razões de economia de encanamento, dispensa os pontos de controle por registros. Tecnicamente, não é considerado tão bom quanto o primeiro. Figura – Barrilete ramificado (Fonte: MACINTYRE, 1996) 12.3 - Modelo de Cálculo Os cálculos necessários devem ser feitos através de uma planilha apresentada pela Figura 25. Os seguintes dados e operações devem ser considerados na execução da planilha: a) Trecho: identificação do trecho de tubulação a ser dimensionado, apresentando à esquerda o número ou letra correspondente à sua entrada e à direita o número ou letra correspondente à sua saída (coluna 1) b) Soma dos pesos: valor referente à somatória dos pesos relativos de todas as peças de utilização alimentadas pelo trecho considerado (coluna 2) c) Vazão estimada, em litros por segundo: valor da vazão total demandada simultaneamente, obtida pela equação Q = 0,3 ; d) Diâmetro, em milímetros: valor do diâmetro interno da tubulação (coluna 4) e) Velocidade, em metros por segundo: valor da velocidade da água no interior da tubulação (coluna 5) f) Perda de carga unitária, em quilopascal por metro: valor da perda de carga por unidade de comprimento da tubulação, obtida pelas equações: J (KPa)= 20,2 10-3. Q1,88 (m3/s). D-4,88 (m), para tubos de aço- carbono, galvanizado e J = 8,69 10-3. Q1,75 . D-4,75 para tubos de plástico e cobre; g) Diferença de cota (desce + ou sobe -), em metros: valor da distância vertical entre a cota de entrada e a cota de saída do trecho considerado, sendo positiva se a diferença ocorrer no sentido da descida e negativa no sentido da subida (coluna 7); h) Pressão disponível, em quilopascais: pressão disponível na saída do trecho considerado, depois de considerada a diferença de cota positiva ou negativa (coluna 8) i) Comprimento real da tubulação, em metros: valor relativo ao comprimento efetivo do trecho considerado (coluna 9) j) Comprimento equivalente da tubulação, em metros: valor relativo ao comprimento real mais os comprimentos equivalentes das conexões (coluna 10) k) Perda de carga na tubulação, em quilopascais: valor calculado para perda de carga na tubulação no trecho considerado (coluna 11) l) Perda de carga nos registros e outros componentes, em quilopascais: valor da perda de carga provocada por registros, válvulas e outras singularidades ocorrentes no trecho considerado, obtida de acordo com as fórmulas (F 04 Ch = 8 x 10 6 .K . Q2 .F 07 0 -2 d-4 ) para registros e pela fórmula F 0 4 Ch = (36 . Q) 2 . (Qmax)-2 para hidrômetros; m) Perda de carga total, em quilopascais: soma das perdas de carga verificadas na tubulação e nos registros e outros (coluna 13) n) Pressão disponível residual, em quilopascais: pressão residual, disponível na saída do trecho considerado, depois de descontadas as perdas de carga verificadas no mesmo trecho (coluna 14) o) Pressão requerida no ponto de utilização: valor da pressão mínima necessária para alimentação da peça de utilização prevista para ser instalada na saída do trecho considerado, quando for o caso (coluna 15) Na Tabela 7 apresenta-se um roteiro simplificado para o dimensionamento do barrilete. Esse dimensionamento, de acordo com a Tabela - Perda de carga em conexões – comprimento equivalente para tubo rugoso (tubo aço-carbono, galvanizado ou não) Diâmetro nominal (DN) Tipo de Conexão Cotovelo 900 Cotovelo 450 Curva 900 Curva 450 Tê passagem direta Tê passagem lateral 15 0,5 0,2 0,3 0,2 0,1 0,7 20 0,7 0,3 0,5 0,3 0,1 1,0 25 0,9 0,4 0,7 0,4 0,2 1,4 32 1,2 0,5 0,8 0,5 0,2 1,7 40 1,4 0,6 1,0 0,6 0,2 2,1 50 1,9 0,9 1,4 0,8 0,3 2,7 65 2,4 1,1 1,7 1,0 0,4 3,4 80 2,8 1,3 2,0 1,2 0,5 4,1 100 3,8 1,7 2,7 - 0,7 5,5 125 4,7 2,2 - - 0,8 6,9 150 5,6 2,6 4,0 - 1,0 8,2 Tabela - Perda de carga em conexões – comprimento equivalente para tubo rugoso (tubo de plástico, cobre ou liga de cobre) Diâmetro nominal (DN) Tipo de Conexão Cotovelo 900 Cotovelo 450 Curva 900 Curva 450 Tê passagem direta Tê passagem lateral 15 1,1 0,4 0,4 0,2 0,7 20 1,2 0,5 0,5 0,3 0,8 2,3 25 1,5 0,7 0,6 0,4 0,9 2,4 32 2,0 1,0 0,7 0,5 1,5 3,1 40 3,2 1,0 1,2 0,6 2,2 4,6 50 3,4 1,3 1,3 0,7 2,3 7,3 65 3,7 1,7 1,4 0,8 2,4 7,6 80 3,9 1,8 1,5 0,9 2,5 7,8 100 4,3 1,9 1,6 1,0 2,6 8,3 125 4,9 2,4 1,9 1,1 3,3 10,0 150 5,4 2,6 2,1 1,2 3,8 11,1 Tabela – Rotina para dimensionamento das tubulações Passo Atividade Coluna da Planilha a preencher 1o Preparar o esquema isométrico da rede e numerar seqüencialmente cada nó ou ponto de utilização desde o reservatório a entrada da coluna; 2o Introduzir a identificação de cada trecho da rede na planilha; 1 3o Determinar, para cada trecho da coluna, a soma dos pesos (P), usando a Tabela 6 2 4o Calcular para cada trecho a vazão, em litros por segundo, com base na equação Q = 0,3 ; 3 5o Partindo da origem de montante da rede, selecionar o diâmetro interno da tubulação de cada trecho, considerando que a velocidade da água não deva ser superior a 3 m/s. Registrar o valor da velocidade e o valor da perda de carga unitária de cada trecho 4,5 e 6 6o Determinar as diferenças de cotas entre a entrada e a saída de cada trecho, considerando positiva quando a entrada tem cota superior à da saída e negativa em caso contrário 7 7o Determinar a pressão disponível na saída de cada trecho, somando ou subtraindo à pressão residual na sua entrada o valor do produto da diferença de cota pelo peso específico da água (10 kN/m3) 8 8o Medir o comprimento real do tubo que compõe cada trecho considerado 9 9o Determinar o comprimento equivalente de cada trecho somando ao comprimento real os comprimento equivalente das conexões 10 10o Determinar a perda de carga de cada trecho multiplicando os valores das colunas 6 e 10 da planilha 11 11o Determinar a perda de carga provocada por registros e outras singularidades dos trechos 12 12o Obter a perda de carga total de cada trecho, somando os valores das colunas 11 e 12 da planilha 13 13o Determinar a pressão disponível residual na saída de cada trecho, subtraindo a perda de carga total (coluna 13) da pressão disponível (coluna 8) 14 14o Se a pressão residual for menor que a pressão requerida no ponto de utilização, ou se a pressão for negativa, repetir os passos 5o ao 13o, selecionando um diâmetro interno maior para a tubulação de cada trecho Tabela – VAZÕES DE PROJETO E PESOS RELATIVOS DOS PONTOS DE UTILIZAÇÃO Aparelho Sanitário Peça de Utilização VAZÃO (l/seg) PESO Bacia Sanitária Caixa de Descarga 0,15 0,3 Válvula de Descarga 1,70 32 Banheira Misturador (água fria) 0,30 1,0 Bebedouro Registro de Pressão 0,10 0,1 Bidê Misturador (água fria) 0,10 0,1 Chuveiro ou Ducha Misturador (água fria) 0,20 0,4 Chuveiro Elétrico Registro de Pressão 0,10 0,1 Lavadora de Pratos ou de roupas Registro de Pressão 0,30 1,0 Lavatório Torneira ou Misturador 0,15 0,3 Mictório Cerâmico Com sifão Válvula de descarga 0,50 2,8 Sem sifão Caixa de descarga 0,15 0,3 Mictório tipo calha Caixa de descarga ou registro de pressão 0,15 por metro de calha 0,3 Pia Torneira ou misturador (água fria) 0,25 0,7 Torneira Elétrica 0,10 0,1 Tanque Torneira 0,25 0,7 Torneira de Jardim ou lavagem em geral torneira 0,20 0,4 Figura – Ábaco para encanamentos de plástico Figura – Ábaco para encanamentos de aço galvanizado 12.1 – Exemplo de Dimensionamento de um Barrilete Dimensionar o barrilete de um prédio residual, esquematizado nas Figuras 28 e 29, sabendo-se que: a coluna AF1 abastece por pavimento uma pia de cozinha, uma torneira de filtro, um tanque de lavar roupa e uma máquina de lavar roupa; a coluna AF2 abastece por andar: uma caixa de descarga, um lavatório, um chuveiro e um bidê: a coluna AF3 abastece por andar: um lavatório, um bidê, um chuveiro e uma caixa de descarga, a coluna AF4 abastece por andar: dois lavatórios, um bidê, um chuveiro, uma caixa de descarga. O prédio possui 10 pavimentos. As colunas AF1, AF2, AF3 e AF4 são idênticas às colunas AF’1’, AF’2’, AF’3’ e AF’4’, respectivamente: a) Distâncias: BC = B’C’ = 1,0 m RX = RX’ = 5,0 m tê de saída bilateral tê de passagem direta comprimento do trecho RX’ 5,00 m Total 16,20 m hRX’ = 0,65 . 16,20 = 10,53 kPa PX = 50 – 10,53 PX = 39,47 kPa • TRECHO X’A tê de saída bilateral 7,60 tê de passagem direta 2,30 comprimento do trecho 5,00 +1,00 = 6,00m Total 15,9 hX’A = 0,38 . 15,9 = 6,04 kPa PA = 39,47 – 6,04 PA = 33,43 m PB • TRECHO AB tê de saída de lado 4,60 m comprimento do trecho AB 2,00 m Total 6,60 m hAB = 1,25 . 6,6 = 8,25 m PB = 30,37 – 8,25 PB = 25,18 kPa PC • TRECHO BC registro de gaveta aberto 0,0 m curva de 90o 0,70 m comprimento do trecho BC 1,00 m Total 2,10 m hBC = 0,61 . 2,10 = 1,24 kPa PC = 25,18 – 1,24 PC = 23,94 kPa PE • TRECHO BE registro de gaveta aberto 0,40 m curva de 90o 0,70 m comprimento do trecho BE 3,00 m Total 4,10 m hBE = 0,75 . 4,10 = 3,07 kPa PE = 25,18 – 3,07 PE = 22,11 kPa PF • TRECHO AF tê de saída de lado 4,6 m comprimento do trecho AF 2,00 m Total 6,60 m hAF = 1,96 . 6,60 = 12,75 kPa PF = 33,43 – 12,75 PF = 20,68 kPa PG • TRECHO FG registro de gaveta 0,40 m curva de 90o 0,70 m comprimento do trecho FG 4,00 m Total 5,10 m hFG = 0,61 . 5,10 = 3,48 kPa PG = 20,68 – 3,48 PG = 17,57 kPa PH • TRECHO FH registro de gaveta 0,40 m curva de 90o 0,70 m comprimento do trecho FH 3,00 m Total 4,10 m hFH = 1,51 . 4,10 = 6,34 kPa PH = 20,68 – 6,34 PH = 14,34 kPa NOTA TÉCNICA: • A norma prescreve que a pressão mínima em qualquer ponto da tubulação não deve ser inferior a 5 kPa. Contudo, a pressão no início das colunas que alimentam chuveiros deve ter um valor maior que 20 kPa de pressão, para que se tenha o valor mínimo de 10 kPa no chuveiro do último pavimento. Assim sendo, esse dimensionamento provavelmente não atenderá essas exigências para bom funcionamento do chuveiro do último pavimento, devendo ser recalculado todo o barrilete com diâmetros das tubulações maiores, a fim de se diminuir as perdas de carga ao longo da tubulação. Essa afirmativa da pressão mínima no início das colunas que alimentam chuveiros não é normalizada, podendo ser até menor que 20 kPa como é o caso desse exemplo, contudo que a altura do pé direito do último apartamento seja maior que 3,00 metros, possibilitando assim a pressão mínima de 10 kPa no chuveiro. 13 – COLUNAS Os diâmetros das colunas são determinados em função das vazões nos trechos e dos limites de velocidade. Uma mesma coluna pode ter dois ou mais trechos com diâmetros diferentes pois a vazão de distribuição diminui a medida que se atinge os pavimentos inferiores (deve-se também levar em conta um critério de economia ao se subdividir a coluna em vários diâmetros. As colunas abastecem os pavimentos através das derivações dos sub-ramais. Os diâmetros mínimos desses sub-ramais. Os diâmetros mínimos desses sub-ramais são apresentados na Tabela 9 transcrita da NBR 5626 (1). Tabela – DIÂMETROS MÍNIMOS DOS SUB-RAMAIS PONTO DE UTILIZAÇÃO PARA DIÂMETRO NOMINAL (mm) Ref. Aquecedor de alta pressão Aquecedor de baixa pressão Banheira Bebedouro Bidê Caixa de descarga Chuveiro Filtro de pressão Lavatório Máquina de lavar roupa ou prato Mictório auto-aspirante Mictório não aspirante Pia de cozinha Tanque de despejo ou de lavar roupa 15 20 15 15 15 15 15 15 15 20 25 15 15 20 ½ ¾ ½ ½ ½ ½ ½ ½ ½ ¾ 1 ½ ½ ¾ Válvula de descarga 32 (A) 1 ¼ O dimensionamento das colunas é acompanhado de uma planilha de cálculo que é mostrada na Figura 25. Essa planilha é muito útil pois permite o conhecimento das pressões em todas as suas derivações em sub-ramais. Através dessas pressões pode-se verificar as pressões de funcionamento dos diversos aparelhos em qualquer pavimento (principalmente a do chuveiro do último pavimento que é a mais crítica). 14 – ALTURA DOS PONTOS DE UTILIZAÇÃO Válvula de descarga 1,10 m Caixa tipo Montana 2,00 m Caixa tipo acoplada ao vaso 1,0 m Banheira 0,55 m Bidê 0,30 m Chuveiro 2,00 a 2,20 m Lavatório 0,60 m Máquina de lavar 0,75 m Tanque 0,90 m Filtro 2,00 m Pia de cozinha 1,00 m 15 – PROTEÇÃO DA REDE CONTRA A RETROSSIFONAGEM Os aparelhos possíveis de provocar retrossifonagem devem ser instalados em coluna, barrilete e reservatório independentes ou podem ser instalados em coluna, barrilete e reservatório comuns a outros aparelhos ou peças, desde que seu sub-ramal esteja protegido por dispositivo quebrado de vácuo ou ainda, podem ser instalados em coluna, barrilete e reservatório comuns desde que a coluna seja dotada de coluna de ventilação, conforme mostra a Figura 30. Figura – Esquema da ventilação da coluna (fonte NBR-5626) Para os sistemas de distribuição direta ou indireta hidropneumática em redes que possuam aparelhos que provocam retrossifonagem deve-se instalar um quebrador de vácuo no sub-ramal que estão interligados a tais aparelhos. 46 A retrossifonagem pode ocorrer em aparelhos que apresentam a entrada de água potável abaixo do plano de transbordamento dos mesmos. Desta forma, devido a um entupimento na saída destes aparelhos e ao aparecimento de sub pressões nos ramais ou sub ramais a eles interligados, as águas servidas podem ser introduzidas nas canalizações que conduzem água potável, contaminando-a. 16 - REFERÊNCIAS BIBLIOGRÁFICAS 1 – ABNT – NBR 5626 – Instalações Prediais de Água Fria, 1998 2 – GUARDIA, A.C. – Utilização de Válvulas de Descarga em Instalações Prediais de Água Fria. Revista Engenharia Sanitária, vol. 16, no 2, 181-183, Rio de Janeiro, abril/junho, 1977. 3 – LIMA, F. R.A. – Reservatório Domiciliar – Aspectos de sua Influência na Qualidade de Água – Dissertação de Mestrado – EESC-USP, 1978. 4 – MARTINS, H.C. – Algumas Considerações sobre Poluição em Rede Predial de Água Fria. VI Congresso de Engenharia Sanitária. Tema 2 – São Paulo, janeiro, 1971. 5 – MACINTYRE, A. J. – Instalações Hidráulicas. 3a Ed. LTC, 1996. 6 – NOGAMI, P.S. et al. – Técnicas de Abastecimento e Tratamento de Água. Vol. I – CETESB – São Paulo, 1978 47
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved