(Parte 1 de 5)

Prof. Carlos Roberto Altafini Semestre letivo 02/2

As caldeiras representam um grande gasto de capital. Sua operação segura e eficaz é freqüentemente crítica para garantir lucratividade. Portanto, é essencial o treinamento e o desenvolvimento do pessoal responsável por esses equipamentos.

Falhas nas práticas bem estabelecidas de funcionamento das caldeiras podem ser catastróficas.

3 ASPECTOS GERAIS RELACIONADOS ÀS CALDEIRAS

Caldeira é o nome popular dado aos equipamentos geradores de vapor, cuja aplicação tem sido ampla no meio industrial e também na geração de energia elétrica nas chamadas centrais termelétricas. Portanto, as atividades que necessitam de vapor para o seu funcionamento, em particular, vapor de água pela sua abundância, têm como componente essencial para sua geração, a caldeira. Esse equipamento, por operar com pressões acima da pressão atmosférica, sendo na grande parte das aplicações industriais até quase 20 vezes maior e nas aplicações para a produção de energia elétrica de 60 a 100 vezes maior, podendo alcançar valores de até 250 vezes mais, constitui um risco eminente na sua operação. Vários são os aspectos relacionados ao funcionamento das caldeiras, os quais serão tratados nesta apostila: Principais conceitos da Termodinâmica envolvidos na operação de Caldeiras; Tipos e classificação das Caldeiras e seus acessórios principais; Riscos de explosões; Tratamento da água de Caldeiras e Norma Regulamentadora Nº 13.

1. PRINCIPAIS CONCEITOS DA TERMODINÂMICA RELACIONADOS À OPERAÇÃO DE CALDEIRAS

• De modo geral, as substâncias podem existir em diferentes fases, que são a fase sólida, fase líquida e a fase gasosa. Assim é definido fase uma porção homogênea de matéria.

Relacionado à fase gasosa da substância, utiliza-se com freqüência o nome vapor para essa fase quando a substância está próxima de um estado em que parte da mesma pode condensar-se. O comportamento pressão, volume e temperatura, que para os chamados Gases Perfeitos é expresso pela equação pv = RT, para o vapor, que é considerado um gás real, essa equação não representa muito bem comportamento mencionado. As equações de estado utilizadas para expressar o comportamento dos gases reais são em geral muito complexas, inviabilizando de forma rápida os seus usos. Para tanto, utiliza-se na maioria das aplicações em engenharia, os diagramas e as tabelas termodinâmicas para as diferentes fases das substâncias. Nesses recursos, especialmente para as fases líquida e gasosa (vapor), são apresentadas os diversos valores das propriedades termodinâmicas: além das três identificadas acima, título, entalpia e entropia.

Nas figuras 1, 2 e 3 são apresentados alguns diagramas para a água, nos quais são identificados os diversos estados que essa substância pode assumir. Esses diagramas, especialmente aquele de Mollier (figura 3), por ser o mais completo, são muito úteis para apresentar as propriedades termodinâmicas e para auxiliar na visualização dos diversos processos pelos quais uma substância pode passar.

É importante destacar aqui que o vapor d’água é utilizado como agente transportador de energia em diversos processos industriais e nas centrais termelétricas. Isso se deve às vantagens a seguir:

• A água é a substância mais abundante sobre a Terra.

• Não é inflamável nem explosivo.

Com base nos diagramas apresentados, algumas considerações são feitas:

• A pressão identificada nos diagramas é a pressão absoluta, a qual é medida em relação a um referencial fixo, dito absoluto. Desse modo, uma pressão medida acima da pressão atmosférica local, que é variável (altura em relação nível do mar, clima, etc.), possui um valor positivo em relação a essa e é chamada de pressão manométrica. Em relação ao referencial absoluto, essa pressão é também positiva e dita de pressão absoluta e é igual a soma da pressão atmosférica com a pressão manométrica (pabs=patm+pman). • O diagrama p x T (vide figura 1) relaciona a pressão de saturação (pressão em que se inicia a vaporização a uma dada temperatura) com a temperatura de saturação

(temperatura em que se inicia a vaporização a uma dada pressão). Ex.: a psat

(pabs)=10 bar (pman≅9bar) a temperatura em que a água começa a vaporizar é ≈

180°C (Tsat). As coordenadas (psat, Tsat) definem a curva de pressão de vapor, que adquire a forma apresentada nos diagramas T x h (figura 2) e h x s (figura 3).

• Nos diagramas são identificados os estados de líquido comprimido, de líquido saturado, de saturação líquido–vapor, de vapor saturado e de vapor superaquecido. Identifica-se ainda nos diagramas T x h e h x s, o ponto crítico da água definido por p=2,09MPa e T=374,14°C, a partir da qual não se identifica mais a presença da fase líquida e vapor existindo em equilíbrio.

• Para o estado de mistura líquido-vapor é comum definir-se o título (x) do vapor, que é a fração em massa (ou percentual em massa) do vapor em relação à massa total da mistura. Isso significa dizer, por exemplo, se o vapor que sai de uma caldeira tem uma qualidade (título) de 97%, significa que 3% é umidade (água líquida).

• Ao iniciar-se a produção de vapor em uma caldeira, primeiramente todo o calor fornecido a água (pela queima do combustível e pelos gases de combustão) serve para aumentar sua temperatura. Ao calor associado à mudança de temperatura da água dá-se o nome de calor sensível. Em uma caldeira, como em uma panela de pressão de cozinha, por ser um recipiente rígido, a medida que o calor é fornecido à água, a pressão aumenta junto com a temperatura até que aconteça a abertura da válvula de segurança. Na temperatura de saturação relativa à pressão de abertura da válvula de segurança (pressão de trabalho da caldeira) inicia-se a geração de vapor com alta intensidade e todo calor fornecido à água é para sua mudança de fase, que acontece a pressão e temperatura constantes. Ao calor associado à mudança de fase da água dá-se o nome de calor latente. Se o vapor obtido na vaporização apresenta qualidade de 100%, seu título é igual a 1 e a esse vapor dá-se o nome de vapor saturado seco. Ainda, se a esse vapor for transferido calor, isso fará aumentar sua temperatura (calor sensível) e provocará o seu superaquecimento (vapor superaquecido) em um determinado grau de superaquecimento. Por exemplo, se ao vapor saturado seco à pressão absoluta de 10 bar (T=180°C) for transferido calor de modo a aumentar sua temperatura para 220°C, o grau de superaquecimento resultante é de 40°C.

Para o completo entendimento de operação das caldeiras, aos conceitos introduzidos anteriormente somam-se aqueles relacionados aos dois princípio básicos da Termodinâmica (1ª e 2ª Leis da Termodinâmica), acrescidos dos princípios que regem o processo de combustão, os mecanismos de transferência de calor e escoamento dos fluidos.

Em geral, o vapor é empregado para aquecimento e para a produção de trabalho mecânico. Para aquecimento, o vapor pode ser usado direta ou indiretamente.

No processo de aquecimento direto, o vapor entra em contato direto com o material a ser aquecido. Exemplo disso é o aquecimento de água ou outros líquidos com injeção direta de vapor. Outros exemplos: lavagem de garrafas, curtimento de couro, esterilização, engomagem de tecidos, etc.. No uso indireto, o vapor não entra em contato com o material a ser aquecido e fica, portanto, separado por uma superfície. Esse método é empregado quando for necessário uma grande quantidade de calor e/ou em processos que devem ser livres de contaminação. Exemplos de equipamentos que operam com vapor de uso indireto: calandras,

6 boylers, radiadores, autoclaves, etc..

Para a produção de potência, o vapor é utilizado em máquinas alternativas e em turbinas, sendo que nessas o vapor é em geral superaquecido. Exemplos de máquinas alternativas: prensas, martelo para forjaria, locomóveis, locomotivas, etc..

O vapor pode ser empregado também para extração de gases não condensáveis, tais como o ar, dos espaços evacuados, nas chamadas bombas de jato. Outra aplicação muito comum do vapor é no bombeio da água de alimentação de caldeiras nos chamados injetores.

2. TIPOS E CLASSIFICAÇÃO DAS CALDEIRAS E SEUS ACESSÓRIOS PRINCIPAIS

A primeira tentativa do homem em produzir vapor na evolução da história da humanidade foi no século I a.C., quando Heron de Alexandria concebeu um aparelho que vaporizava água e movimentava uma esfera em torno de seu eixo. Esse foi o aparelho percursor das caldeiras e das turbinas a vapor.

Entretanto, foi na época da Revolução Industrial que teve impulso o uso do vapor sob pressão para movimentar as máquinas. Muitos, entre cientistas, artífices e operários, ocuparam-se por longos anos na evolução dos geradores de vapor. Os mais notáveis trabalhos neste campo se devem a Denis Papin na França, a James Watt na Escócia e a Wilcox nos Estados Unidos.

Por volta de 1835, haviam aproximadamente 6 mil teares operantes a vapor.

Entretanto, foi após a 1ª Guerra Mundial que o emprego do vapor se acentuou. Mesmo com a tecnologia, normas, procedimentos e ensaios que hoje existem, as caldeiras ainda explodem, imagina-se quantos acidentes ocorreram e quantas vítimas houveram desde a época em que o vapor passou a ser o principal agente de movimentação das máquinas.

Atualmente as caldeira de uso industrial produzem até 10 toneladas ou mais de vapor por hora e o fator limitante da capacidade de produção de vapor é as dimensões da unidade e as propriedades metalúrgicas dos materiais utilizados.

Aliado aos avanços da tecnologia na produção de vapor, houve a necessidade de avanços nas técnicas de proteção tanto dos operadores dos equipamentos geradores de vapor, quanto da comunidade ao redor da fábrica. Foi a partir de um dos acidentes mais catastróficos ocorridos durante a evolução industrial, o qual aconteceu em 1905 na cidade de

Massachusetts/EUA, onde morreram 58 pessoas, que a sociedade alertou-se para a necessidade de normas e procedimentos para a construção, manutenção e operação das caldeiras. Assim, foram criados os códigos da American Society of Mechanical Engineers (ASME), o qual se constituem na principal fonte de referência normativa sobre caldeiras e vasos de pressão do mundo.

Nos geradores de vapor, a energia térmica é liberada através das seguintes formas:

• Pela queima de um combustível sólido (carvão, lenha), líquido (óleos derivados do petróleo) ou gasoso (gás natural).

• Por resistências elétricas (eletrotermia).

• Por fontes não convencionais, como a fissão nuclear, energia solar, energia geotérmica, etc..

A energia térmica liberada na queima de qualquer uma das fontes acima, deve ser adequadamente transferida para as superfícies de absorção de calor.

Existem diversos tipos de caldeiras, as quais podem ser classificadas segundo diversos critérios. Segundo uma classificação mais genérica, as caldeiras se classificam em FUMOTUBULARES e AQUOTUBULARES.

As caldeiras fumotubulares ou flamotubulares se caracterizam pela circulação interna dos gases de combustão, ou seja, os tubos conduzem os gases por todo o interior da caldeira, como mostra a figura 4. São construídas para operar com pressões limitadas, pois as partes internas submetidas à pressão são relativamente grandes, inviabilizando o emprego de chapas de maiores espessuras. Existem caldeiras fumotubulares verticais (figura 4), porém, atualmente, as caldeiras horizontais são muito mais comuns, podendo ser fabricadas com fornalhas lisas e corrugadas, com 1, 2 ou 3 passes, com traseira seca ou molhada, conforme visto na figura 4. Nas caldeiras fumotubulares que operam com combustíveis líquidos ou gasosos, o queimador é instalado na parte frontal da fornalha. Nessa, predomina a troca de calor por radiação luminosa e nas partes posteriores da caldeira (caixas de reversão e tubos) a troca de calor se processa essencialmente por radiação gasosa e convecção. A fornalha e os tubos ficam circundados de água e são ancorados nos espelhos (discos externos) por solda ou por mandrilagem. Os espelhos são ancorados por solda ao tubulão externo. Esses estão submetidos à pressão interna do vapor e os tubos e fornalha estão submetidos à pressão externa. As caldeiras fumotubulares, em razão de seu aspecto construtivo, são limitadas em produção e pressão, que em geral não ultrapassam valores de 15 ton/h de produção de vapor e

8 18 bar de pressão de trabalho.

As caldeiras aquotubulares se caracterizam pela circulação externa dos gases de combustão e os tubos conduzem massa de água e vapor. A figura 5 ilustra este tipo de caldeira, cuja produção de vapor é maior que a das fumotubulares. As caldeiras aquotubulares são de utilização mais ampla, pois possuem vasos pressurizados internamente e de menores dimensões relativas. Isso viabiliza econômica e tecnicamente o emprego de maiores espessuras e, portanto, a operação em pressões mais elevadas. Outra característica importante desse tipo de caldeira é a possibilidade de adaptação de acessórios, como o superaquecedor, que permite o fornecimento de vapor superaquecido, necessário ao funcionamento das turbinas.

Nas caldeiras aquotubulares o volume de água é distribuído por um grande número de tubos submetidos, exteriormente, ao contato dos gases de combustão. Os tubos podem ser retos ou curvados, dispostos de forma a garantir uma eficiente circulação da água em ebulição. A circulação natural da água está condicionada às unidades que operam a baixas pressões de trabalho, pois valores próximos à pressão crítica tornam a circulação natural deficiente (γLiq≈γVap, figura 6). As figuras de 7 a 1 mostram diversos tipos construtivos de caldeiras aquotubulares.

Existem, embora sejam raras, caldeiras que possuem partes fumotubulares e partes aquotubulares, constituindo, dessa forma, o que se pode denominar de caldeiras mistas.

As caldeiras fumotubulares são em geral, compactas, isto é, saem prontas da fábrica, restando apenas sua instalação no local em que serão operadas. As caldeiras aquotubulares, porém, além do tipo compacto, podem ser do tipo montadas em campo, quando seu porte justificar sua construção no local de operação. Essas se caracterizam de acordo com a estrutura que a suporta: caldeira auto-sustentada, quando os próprios tubos e tubulões constituem sua estrutura; caldeira suspensa, quando a necessidade de uma estrutura a parte; e caldeira mista, que emprega estas duas formas básicas de sustentação.

Após a queima do combustível na fornalha, os gases quentes percorrem o circuito dos gases, desenvolvendo diversas passagens para melhor aproveitamento do calor, sendo, finalmente, lançados na atmosfera através da chaminé. É evidente que, para essa movimentação, há necessidade de diferenças de pressões para promover a retirada dos gases queimados e possibilitar a entrada de nova quantidade de ar e combustível. Dá-se o nome de tiragem ao processo que retira os gases mediante a criação de pressões diferenciais na fornalha. Portanto, as caldeiras podem ser de tiragem natural, quando esta se estabelece por meio da chaminé, e de tiragem forçada quando, para produzir a depressão, são utilizados ventiladores.

Finalmente, para os propósitos da NR 13, as caldeiras são classificadas em 3 categorias, conforme segue:

• Caldeiras da categoria A são aquelas cuja pressão de operação é igual ou superior a 1960 kPa (19,6 bar = 19,98 kgf/cm2).

• Caldeiras da categoria C são aquelas cuja pressão de operação é igual ou inferior a 58 kPa (5,8 bar = 5,9 kgf/cm2) e o volume interno é igual ou inferior a 100 litros.

(Parte 1 de 5)

Comentários