sensoriamento remoto

sensoriamento remoto

(Parte 2 de 10)

Conforme pode ser observado, em ambas as linhas, as maiores intensidades de

REM são ocorrem na faixa de comprimentos de onda compreendida entre 0,4 à 0,7 µm. Esta faixa foi apresentada na Figura 2.3 como sendo a região do visível, assim denominada pelo fato de que a maioria dos animais, assim como o homem, são capazes de perceber a REM refletida dos objetos que os rodeiam nesta região espectral.

Cada fonte de REM possui espectos próprios de radiação. O Sol radia a REM segundo o gráfico apresentado na Figura 2.4.

Fig.2.4-Intensidade de energia solar no topo da atmosfera na superfície terrestre e de um corpo negro a 6000o K. FONTE: Swain e Davis (1978)

Introdução ao Sensoriamento Remoto

As faixas mais comumente exploradas para fins do SR dos recursos naturais são: visível, infravermelho próximo, infravermelho médio e microondas.

2.2 Conceitos radiométricos

Para que se possa compreender melhor como se viabiliza a aplicação das técnicas de SR no estudo dos recursos naturais, faz-se necessária a apresentação de pelo menos quatro parâmetros radiométricos. O primeiro deles, refere-se à Irradiância. Em termos bastante simplificados, a Irradiância representa a intensidade do fluxo radiante, proveniente de todas as direções, que atinge uma dada superfície. A Figura 2.5 ilustra o aspecto geométrico mencionado.

Vale salientar que neste fluxo radiante estão contidos todos os diversos comprimentos de onda que são radiados pela fonte, segundo suas próprias características, assim como apresentado na Figura 2.4 para a fonte Sol.

Assim que um determinado fluxo radiante atinge uma superfície, ele sofre três fenômenos: reflexão, transmissão e absorção. Estes fenômenos são dependentes das características físico-químicas do próprio objeto, que definem as intensidades de reflexão, transmissão e absorção da REM em cada comprimento de onda incidente no objeto.

FONTE: Ponzoni e Disperati (1995)

Fig. 2.5 - Representação gráfica dos possíveis ângulos de incidência sobre um alvo.

Imaginando então somente a porção refletida pelo objeto, um novo fluxo será originado em sentido contrário ao incidente, mas nas mesmas direções. A intensidade deste fluxo pode também ser quantificada e é expressa pela chamada Excitância.

Parte deste fluxo refletido pelo objeto pode ser coletado por um sensor localizado remotamente. O termo “parte” refere-se a dois aspectos: um de ordem geométrica e outro de ordem espectral. O de ordem geométrica refere-se por sua vez ao fato de que não há instrumentos capazes de registrar a Excitância, uma vez que seria necessário o desenvolvimento de um sensor que envolvesse todo o objeto, o que comprometeria a incidência da REM. Evidentemente poderiam ser desenvolvidos métodos que permitissem sua estimativa, mas outra solução foi adotada. Para melhor compreender esta solução, a Figura 2.5 apresenta um esquema da trajetória da REM proveniente de um ponto da superfície de um objeto fictício.

Todo sensor possui uma abertura pela qual a REM refletida ou emitada pelos objetos passa em direção ao chamado “detetor”, que é o elemento que realmente “sente” a REM. Essa abertura possui dimensões variáveis e dependentes das características tecnológicas do instrumento ou da própria natureza das operações de coleta de dados. De qualquer forma, entre esta abertura e o ponto da superfície do objeto passa a ser definido um cone por onde trafega a REM. Esse cone é denominado de ângulo sólido.

Fica claro que somente a REM que estiver contida neste ângulo sólido será sentida pelo detetor, mas ao mesmo tempo, o sensor não observa somente um ponto na superfície

Introdução ao Sensoriamento Remoto e sim uma determinada área desta superfície, a qual é constituída por infinitos pontos. Assim, o que realmente é medido pelo sensor é a intensidade de todos os infinitos fluxos contidos nos ângulos sólidos dos pontos da área da qual ele é capaz de observar. Esta intensidade é denominada de Radiância. A Radiância é portanto a intensidade do fluxo radiante por unidade de ângulo sólido e seu conceito pode ser comparado ao conceito de brilho, ou seja, um objeto é considerado mais brilhante quanto maior for sua Radiância medida.

O aspecto espectral refere-se ao fato de que a composição espectral do fluxo que deixa a superfície sofre alterações que são dependentes das suas características físicoquímicas. Assim, a Radiância medida por um sensor pode ser determinada para um intervalo específico de comprimentos de onda (região ou banda espectral).

No esquema apresentado na Figura 2.5, fica claro que o sensor “observa” instantaneamente uma determinada porção da superfície do terreno. A área desta superfície define o chamado elemento de resolução espacial. Desta área é registrado um único valor de Radiância para cada faixa ou região espectral que o sensor é capaz de perceber a REM refletida ou emitida pelos objetos contidos em seu elemento de resolução espacial.

Fig.2.5 Representação esquemática do conceito de Radiância medida através de um sensor remotamente localizado.

Nota-se portanto a existência de dois principais aspectos intrínsicos às técnicas de SR: o aspecto espacial e o aspecto espectral. Estes aspectos são comumente denominados de domínios espacial e espectral, respectivamente.

O domínio espacial é expresso pela resolução espacial do sensor, a qual é definida como a menor área da qual o sensor é capaz de registrar a REM. O domínio espectral refere-se à largura da faixa espectral que este mesmo sensor é sensível. Faixas mais largas conferem uma resolução espectral menor ao sensor. Contrariamente, elementos de resolução espacial menores, conferem aos sensor maiores resoluções espaciais.

Existe ainda um terceiro domínio que é o domínio temporal, o qual refere-se ao período de tempo compreendido entre duas coletas de dados sobre uma mesma superfície do

Introdução ao Sensoriamento Remoto terreno. Este domínio é expresso pela resolução temporal da plataforma que sustenta o sensor, podendo ser ela uma haste portátil, uma aeronave ou até mesmo um satélite. Diz-se que um sensor possui maiores resoluções temporais, quanto menores forem os períodos de tempo entre coletas de dados.

Pelo já exposto, pode ser verificado que a Radiância é também dependente da intensidade do fluxo radiante que atinge o objeto (Irradiância). Quanto maior for essa intensidade, maior também será aquela referente ao fluxo que deixa o objeto, e consequentemente, maior será a Radiância. Para que se conheça as propriedades intrínsecas dos objetos em termos de sua interação com a REM, faz-se necessária a apresentação de mais um conceito importante que é o da Reflectância.

A Reflectância representa uma relação entre a Radiância refletida de um dado objeto pela Irradiância. Nota-se portanto que a Reflectância expressa as propriedades instrínsecas dos objetos em refletir a REM sobre eles incidente. Ela é expressa em percentagem, possuindo então um caráter relativo.

É através da Reflectância que são estudadas as características intrínsecas dos objetos em refletir a REM incidente, pois ela é dependente das suas propriedades físicoquímicas. Este estudo é denominado de estudo do Comportamento espectral de alvos, cujos principais aspectos serão apresentados oportunamente.

3. TIPOS DE DADOS DE SENSORIAMENTO REMOTO

Os tipos de dados de sensoriamento remoto a ser adquiridos dependem do tipo de informação necessária, do tamanho e da dinâmica dos objetos ou fenômenos estudados. Conforme já mencionado anteriormente, a aquisição de dados é viabilizada através de instrumentos denominados sensores que diferenciam-se entre si pela forma de funcionamente e por suas “capacidades” (resoluções espacial, espectral e radiométrica). A Figura 3.1 apresenta um esquema no qual são relacionados alguns tipos de sensores e o papel que têm na aquisição dos diferentes tipos de informação.

Informação Informação

EspectralEspectral Informação sobreInformação sobre

IntensidadeIntensidade

Informação Informação EspacialEspacial

EspctroradiômetrosEspctroradiômetros DifusômetrosDifusômetros

RadiômetrosRadiômetrosEspectrômetrosEspectrômetros

Es pectr ô metro s i magea do res

Es pectr ô metro s i magea do res Radi etros I mag eado re s

Radi ôm etros I mag eado re s

ImageadoresImageadores AltímetrosAltímetros SondasSondas

Fig. 3.1 – Diferentes tipos de informações disponíveis em diferentes tipos de sensores (Adaptado de Elachi, 1987).

Os dados de sensoriamento remoto podem ser adquiridos no formato de imagens bidimensionais quando são necessárias informações com alta resolução espacial, como é

Introdução ao Sensoriamento Remoto o caso da imagem TM/Landsat da Figura 3.2. Tais imagens também são importantes quando se deseja informação sinóptica sobre amplas áreas como aquelas fornecidas pelos satélites meteorológicos (Figura 3.3).

As imagens bidimensionais podem ser adquiridas em diferentes regiões do espectro eletromagnético, tais como a região visível, termal, microondas, etc.; com canais de diferentes resoluções espectrais que vão de poucos nanômetros, como é o caso dos sensores hiperespectrais, até sistemas pancromáticos que integram radiação em todo o espectro visível.

Os Espectrômetros são utilizados para detectar e medir o conteúdo espectral de um campo eletromagnético. Este tipo de informação é importante para a identificação da composição química dos objetos. Quando se estuda a atmosfera, os aspectos espaciais são menos críticos do que quando se estuda a superfície terrestre, porquê o gradiente de mudança da composição química é muito menor. Assim sendo, os sensores para o estudo da composição química da atmosfera não precisam ter resolução espacial elevada, mas precisam de excelente resolução espectral.

No caso de estudos da superfície terrestre, quando há o interesse de conhecer a composição química das rochas, por exemplo, torna-se essencial uma boa resolução espacial, e neste caso, recomenda-se a aplicação de espectrômetros imageadores.

Fig. 3.2 – Imagem bidimensional do terreno exemplificada por um subcena de uma imagem do sensor Thematic Mapper a bordo do satélite Landsat-5

em uma ampla região espectralUm exemplo de sensores utilizados com essa finalidade são os

Em inúmeras aplicações os aspectos espectrais e espaciais são menos importantes e o que se necessita são medidas precisas da intensidade do campo eletromagnético radiômetros, dentre os quais o Advanced High Resolution Radiometer que se encontra a bordo do satélite NOAA. O Radiômetro do NOAA foi concebido para fornecer informações precisas sobre a temperatura. Assim sendo, a resolução espectral dos canais termais é de 1000 nm e a resolução espacial no nadir é de 1, 1 km. Mas a resolução radiométrica do sistema, ou seja sua capacidade de medir pequenas variações na intensidade da radiância medida pelo sensor é bastante alta (10 bits).

Introdução ao Sensoriamento Remoto

Fig. 3.3 – Imagem sinóptica de um satélite meteorológico

Em numerosas aplicações, a informação necessária é a distribuição tridimensional de uma dada variável. Neste caso, sensores tais como os altímetros (fornecem informações sobre a topografia da superfície) e as sondas (fornecem a distribuição vertical da temperatura na coluna atmosférica) são extremamente úteis.

3.1. Plataformas de sensoriamento remoto

(Parte 2 de 10)

Comentários