Apostila de Soldagem MIG e MAG

Apostila de Soldagem MIG e MAG

(Parte 3 de 5)

Figura 14 - Efeito da indutância no aspecto do cordão de solda Na soldagem em aerossol a adição de indutância na fonte produ- zirá uma melhor partida de arco. Indutância excessiva resultará numa partida errática.

Quando for alcançada a condição de uma corrente de curtocircuito correta e uma taxa de aumento de corrente também correta, a quantidade de respingos será mínima. Os ajustes necessários na fonte para a condição de respingo mínimo variam com o material e diâmetro do arame. Como regra geral, o valor da corrente de curtocircuito e o valor da indutância necessária para a operação ideal aumentam à medida que o diâmetro do arame aumenta.

Capítulo 4 Gases de proteção

O ar atmosférico é expulso da região de soldagem por um gás de proteção com o objetivo de evitar a contaminação da poça de fusão. A contaminação é causada principalmente pelo nitrogênio (N2), oxigênio (O2) e vapor d'água (H2O) presentes na atmosfera.

Como exemplo, o nitrogênio no aço solidificado reduz a ductilidade1 e a tenacidade2 da solda e pode causar fissuração. Em grandes quantidades o nitrogênio pode causar também porosidade.

O oxigênio em excesso no aço combina-se com o carbono e forma o monóxido de carbono (CO), que pode ser aprisionado no metal, causando porosidade. Além disso, o oxigênio em excesso pode se combinar com outros elementos no aço e formar compostos que produzem inclusões no metal de solda — o manganês (Mn) e o silício (Si), por exemplo.

Quando o hidrogênio (H), presente no vapor d'água e no óleo, combina-se com o ferro (Fe) ou com o alumínio (Al), resultará em porosidade e pode ocorrer fissuração sob cordão no metal de solda.

Para evitar esses problemas associados com a contaminação da poça de fusão, três gases principais são utilizados como proteção: ar- gônio (Ar), hélio (He) e dióxido de carbono (CO2). Além desses, pequenas quantidades de oxigênio (O2), nitrogênio (N2) e hidrogênio (H2) provaram ser benéficas em algumas aplicações. Desses gases,

1 Ductilidade é a capacidade de um material sofrer deformação plástica ou permanente sem se romper (carregamentos estáticos). 2 Tenacidade é a energia absorvida pelo material a uma determinada temperatura (carregamentos dinâmicos) apenas o argônio e o hélio são gases inertes3 . A compensação para a tendência de oxidação dos outros gases é realizada pelas formulações especiais dos arames.

O argônio, o hélio e o dióxido de carbono podem ser empregados puros, em combinações ou misturados com outros gases para proporcionar soldas livres de defeitos numa variedade de aplicações e processos de soldagem.

Propriedades dos gases

As propriedades básicas dos gases de proteção que afetam o desempenho do processo de soldagem incluem: propriedades térmicas a temperaturas elevadas; reação química do gás com os vários elementos no metal de base e no arame de solda; efeito de cada gás no modo de transferência de metal.

A condutividade térmica do gás à temperatura do arco influencia a tensão do arco bem como a energia térmica transferida à solda. Quando a condutividade térmica aumenta, maior tensão de soldagem é necessária para sustentar o arco. Por exemplo, a condutividade térmica do hélio e do dióxido de carbono é muito maior que a do argônio; devido a isso, aqueles gases transferem mais calor à solda. Portanto, o hélio e o dióxido de carbono necessitam de uma tensão de soldagem maior para manter o arco estável.

A compatibilidade de cada gás com o arame e o metal de base determina a adequação das diversas combinações de gases. O dióxido de carbono e a maioria dos gases de proteção contendo oxigênio não devem ser utilizados na soldagem do alumínio, pois se formará o

3 Gases inertes são aqueles que não se combinam com outros elementos.

óxido de alumínio (Al2O3). Entretanto, o dióxido de carbono e o oxigênio são úteis às vezes e mesmo essenciais na soldagem MAG dos aços. Eles promovem estabilidade ao arco e uma boa fusão entre a poça de fusão e o material de base4 . O oxigênio é bem mais reativo que o dióxido de carbono. Conseqüentemente, as adições de oxigênio ao argônio são geralmente menores que 12% em volume, enquanto o dióxido de carbono puro pode ser empregado na soldagem MAG de aços doces. Os arames de aço devem conter elementos fortemente desoxidantes para suprimir a porosidade quando usados com gases oxidantes, particularmente misturas com altos percentuais de dióxido de carbono ou oxigênio e especialmente o dióxido de carbono puro.

Os gases de proteção também determinam o modo de transferência do metal e a profundidade à qual a peça é fundida — a profundidade de penetração. A Tabela IV e a Tabela V sumarizam os gases de proteção recomendados para os vários materiais e tipos de transferência de metal. A transferência por aerossol não é obtida quando o gás de proteção é rico em CO2. Por exemplo, misturas contendo mais que 20% CO2 não exibem uma verdadeira transferência em aerossol.

Até certo ponto, misturas até 30% CO2 podem apresentar um arco com um aspecto semelhante ao aerossol a altos níveis de corrente, mas são incapazes de manter a estabilidade do arco obtida com mis- turas de menores teores de CO2. Os níveis de respingos também tenderão a aumentar quando as misturas forem ricas em CO2.

Argônio (Ar)

O argônio é um gás inerte que é usado tanto puro quanto em combinações com outros gases para alcançar as características de arco desejadas na soldagem de metais ferrosos e não ferrosos. Qua-

4 A boa fusão entre o metal de solda fundido e o metal de base é denominada molhabilidade.

se todos os processos de soldagem podem utilizar o argônio ou misturas de argônio para alcançar boa soldabilidade, propriedades mecânicas, características do arco e produtividade. O argônio é empregado puro em materiais não ferrosos como o alumínio, ligas de níquel, ligas de cobre e materiais reativos que incluem o zircônio, titânio e tântalo. O argônio proporciona excelente estabilidade ao arco no modo de transferência por aerossol, boa penetração e ótimo perfil do cordão na soldagem desses metais. Algumas soldas em curto-circuito de materiais de pequena espessura são também viáveis. Quando usado na soldagem de metais ferrosos, o argônio é normalmente misturado com outros gases como o oxigênio, hélio, hidrogênio, dióxido de carbono e/ou nitrogênio.

Figura 15 - Efeito de adições de oxigênio ao argônio

O baixo potencial de ionização do argônio cria uma excelente condução da corrente e uma estabilidade de arco superior. O argônio produz uma coluna de arco restrita a uma alta densidade de corrente que faz com que a energia do arco fique concentrada em uma peque- na área. O resultado é um perfil de penetração profunda possuindo a forma de um dedo — perfil dediforme — (veja a Figura 17).

Figura 16 - Comparação entre os gases de proteção 95% Ar/5% O2 e CO2

Figura 17 - Perfil dediforme obtido na soldagem MAG empregando arame sólido cobreado e uma mistura Ar/CO2

Dióxido de carbono (CO2)

O dióxido de carbono puro não é um gás inerte porque o calor do arco o dissocia em monóxido de carbono e oxigênio livre (veja a E- quação [1]). Esse oxigênio combinar-se-á com os elementos em transferência através do arco para formar óxidos que são liberados da poça de fusão na forma de escória ou carepa. Embora o CO2 seja um gás ativo e produza um efeito oxidante, soldas íntegras podem ser consistente e facilmente obtidas sem a presença de porosidade e outras descontinuidades.

O dióxido de carbono é largamente empregado na soldagem de aços. Sua popularidade é devida a sua disponibilidade e à boa qualidade da solda, bem como pelo seu baixo custo e instalações simples. Deve ser mencionado que o baixo custo do gás não necessariamente se traduz num baixo custo por metro linear de solda, sendo fortemente dependente da aplicação. A baixa eficiência de deposição que o

CO2 proporciona — causada pela perda por respingos — influencia no custo final da solda.

O dióxido de carbono não permitirá uma transferência em aerossol; por isso, os modos de transferência de metal ficam restritos ao curto-circuito e à transferência globular. A vantagem do CO2 são velocidades de soldagem maiores e penetração profunda. Os maiores in- convenientes do CO2 são a indesejável transferência globular e, conseqüentemente, os altos níveis de respingos na solda. A superfície do cordão de solda resultante da proteção com o CO2 puro é, na maioria dos casos, fortemente oxidada. Um arame de solda contendo grande quantidade de elementos desoxidantes é algumas vezes necessário para compensar a natureza reativa do gás. De um modo geral, boas propriedades mecânicas podem ser obtidas com o CO2. O argônio é misturado freqüentemente com o CO2 para balancear as característi- cas de desempenho do CO2 puro. Se as propriedades de impacto tiverem que ser maximizadas, são recomendadas misturas de Ar e

Hélio (He)

O hélio é um gás inerte que é empregado nas aplicações de soldagem onde são necessários um maior aporte térmico para melhorar a molhabilidade do cordão de solda, maior penetração e maior velocidade de soldagem. Na soldagem MIG o hélio não produz um arco tão estável quanto o argônio. Comparado com o argônio, o hélio apresenta maior condutividade térmica e maior variação de tensão, e conduz a um perfil de penetração mais largo e mais raso. A soldagem MIG do alumínio com hélio puro não proporciona a mesma ação de limpeza que o argônio puro, porém é benéfico e algumas vezes recomendado para a soldagem de peças espessas de alumínio. O arco elétrico com o hélio é mais largo que com o argônio, o que reduz a densidade de corrente. A maior variação de tensão provoca maiores aportes térmicos em relação ao argônio, promovendo então maior fluidez da poça de fusão e subseqüente maior molhabilidade do cordão de solda. Esse fenômeno é vantajoso na soldagem do alumínio, magnésio e ligas de cobre.

O hélio é freqüentemente misturado em diversas proporções com o argônio para tirar vantagem das boas características de ambos os gases. O argônio melhora a estabilidade do arco e a ação de limpeza, na soldagem do alumínio e do magnésio, enquanto o hélio melhora a molhabilidade e a coalescência do metal de solda.

Misturas binárias

Argônio-oxigênio A adição de pequenas quantidades de O2 ao argônio estabiliza muito bem o arco elétrico, aumenta a taxa de fusão do arame, abaixa a corrente de transição para transferência em aerossol, e melhora a molhabilidade e o perfil do cordão de solda. A poça de fusão fica mais fluida e permanece no estado líquido por mais tempo, permitindo que o metal flua até os cantos do chanfro. Isso reduz as mordeduras e ajuda a manter achatado o cordão de solda. Ocasionalmente, pequenas adições de oxigênio são utilizadas em aplicações de metais não ferrosos. Por exemplo, pode ser encontrado na literatura que a adição de 0,1% de oxigênio é útil para a estabilização do arco na soldagem de chapas de alumínio superpuro.

Argônio / 1% O2 – essa mistura é primariamente empregada na transferência em aerossol para aços inoxidáveis. 1% O2 é normalmente suficiente para estabilizar o arco, aumentar a taxa de goteja- mento, proporcionar coalescência e melhorar a aparência do cordão de solda.

Argônio / 2% O2 – essa mistura é utilizada na soldagem MIG com transferência em aerossol de aços carbono, aços de baixa liga e aços inoxidáveis. Ela proporciona uma ação extra de molhabilidade sobre a mistura a 1% O2. As propriedades mecânicas e a resistência à corro- são das soldas feitas com adições de 1% O2 e 2% O2 são equivalentes.

Argônio / 5% O2 – essa mistura proporciona uma poça de fusão mais fluida, porém controlável. É a mistura argônio-oxigênio mais comum empregada na soldagem em geral dos aços carbono. O oxigênio adicional também permite maiores velocidades de soldagem.

Argônio / 8-12% O2 – a principal aplicação dessa mistura é na soldagem monopasse. O potencial de oxidação mais alto desses gases deve ser levado em consideração com respeito à composição química do arame de solda. Em alguns casos será necessário o uso de um arame com maior teor de elementos de liga para compensar a natureza reativa desse gás de proteção. A maior fluidez da poça de fusão e a menor corrente de transição para transferência em aerossol des- sas misturas pode apresentar algumas vantagens em diversas aplicações de soldagem.

Argônio / 12-25% O2 – misturas com níveis muito altos de oxigênio têm sido empregadas limitadamente, porém os benefícios do uso de

25% O2 contra 12% O2 são discutíveis. A fluidez excessiva da poça de fusão é uma característica desse gás. É de se esperar sobre a super- fície do cordão de solda uma camada espessa de escória e/ou carepa de difícil remoção. Soldas íntegras podem ser confeccionadas a

25% O2 com pouca ou nenhuma porosidade. É recomendada a remoção da escória / carepa antes dos passes de solda subseqüentes pa- ra assegurar a melhor integridade da solda.

Argônio-dióxido de carbono (Ar / CO2)

As misturas argônio-dióxido de carbono são usadas principalmente nos aços carbono e de baixa liga e, com aplicação limitada, em aços inoxidáveis. As adições de argônio ao dióxido de carbono diminuem os níveis de respingo normalmente experimentados com o dióxido de carbono puro. Pequenas adições de dióxido de carbono ao argônio produzem as mesmas características de transferência em aerossol que as pequenas adições de oxigênio. A diferença recai na maioria das vezes nas maiores correntes de transição para transferência em aerossol das misturas argônio / dióxido de carbono. Na soldagem MIG/MAG com adições de dióxido de carbono um nível de corrente ligeiramente maior deve ser atingido para estabelecer e manter uma transferência de metal estável em aerossol através do arco. Adições de oxigênio reduzem a corrente de transição para transferên- cia em aerossol. Acima de aproximadamente 20% CO2 a transferência em aerossol torna-se instável e começam a ocorrer aleatoriamen- te transferências por curto-circuito e globular.

Argônio / 3-10% CO2 – essas misturas são empregadas na transferência por curto-circuito e na transferência em aerossol em uma série de espessuras de aços carbono. Como as misturas conseguem utilizar os dois modos de transferência com sucesso esse gás ganhou muita popularidade como uma mistura versátil. Misturas a 5% são muito comuns na soldagem MIG pulsada fora de posição de peças espessas de aços de baixa liga. As soldas são geralmente menos o- xidadas que aquelas com misturas 98% Ar / 2% CO2. Melhores penetrações são alcançadas com menos porosidade quando se utilizam adições de dióxido de carbono no lugar das adições de oxigênio. Considerando a molhabilidade, é necessário o dobro de dióxido de carbono na mistura para se conseguir o mesmo resultado que com o oxigênio. De 5% a 10% CO2 o arco torna-se muito forte e definido, dando a essas misturas mais tolerância à carepa e uma poça de fu- são muito fácil de controlar.

Argônio / 1-20% CO2 – essa faixa de misturas tem sido empregada em diversas aplicações de soldagem MIG/MAG como chanfro estrei- to, soldagem fora de posição de chapas finas e soldagem a altas velocidades. A maioria das aplicações é em aços carbono e de baixa liga. Misturando o dióxido de carbono nessa faixa, pode ser alcançada a produtividade máxima na soldagem de peças de pequena espessura. Isso é feito minimizando a possibilidade de furar a peça e simultaneamente maximizando as taxas de deposição e as velocidades de soldagem. Menores teores de dióxido de carbono também melhoram a eficiência de deposição por meio da redução das perdas por respingos.

Argônio / 21-25% CO2 (C25) – essa faixa é universalmente conhecida como o gás usado na soldagem MAG com transferência por curto- circuito em aços doces. Foi originalmente formulado para maximizar a freqüência de curto-circuito em arames sólidos de diâmetros 0,8 m e 0,9 m, mas, ao longo dos anos, tornou-se o padrão de fato para a maioria dos diâmetros dos arames sólidos e também dos arames tubulares mais comuns.

Essa mistura funciona bem em aplicações de altas correntes em materiais espessos, e pode alcançar boa estabilidade do arco, contro- le da poça de fusão e aparência do cordão, bem como alta produtividade (veja a Figura 18).

Figura 18 - Efeito de adições de dióxido de carbono (CO2) ao argônio (Ar)

(Parte 3 de 5)

Comentários