Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Vetores - álgebra Linear e Geometria Analítica, Notas de estudo de Geometria Analítica e Álgebra Linear

Apresenta uma óptima explicação sobre este tema tão complexo

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 01/05/2008

raquel-pansera-4
raquel-pansera-4 🇧🇷

1 documento

Pré-visualização parcial do texto

Baixe Vetores - álgebra Linear e Geometria Analítica e outras Notas de estudo em PDF para Geometria Analítica e Álgebra Linear, somente na Docsity! Vetores I 1 - O VETOR Considere o segmento orientado AB na figura abaixo. Observe que o segmento orientado AB é caracterizado por três aspectos bastante definidos: • comprimento (denominado módulo) • direção • sentido (de A para B) Chama-se vetor ao conjunto infinito de todos os segmentos orientados equipolentes a AB, ou seja, o conjunto infinito de todos os segmentos orientados que possuem o mesmo comprimento, a mesma direção e o mesmo sentido de AB. Assim, a idéia de vetor nos levaria a uma representação do tipo: Na prática, para representar um vetor, tomamos apenas um dos infinitos segmentos orientados que o compõe. Guarde esta idéia, pois ela é importante! Sendo u um vetor genérico, o representamos pelo símbolo: Para facilitar o texto, representaremos o vetor acima na forma em negrito u . Todas as representações de letras em negrito neste arquivo, representarão vetores. O módulo do vetor u, será indicado simplesmente por u, ou seja, a mesma letra indicativa do vetor, sem o negrito. Podemos classificar os vetores em tres tipos fundamentais: Vetor livre - aquele que fica completamente caracterizado, conhecendo-se o seu módulo, a sua direção e o seu sentido. Exemplo: o vetor u das figuras acima. Vetor deslizante - aquele que para ficar completamente caracterizado, devemos conhecer além da sua direção, do seu módulo e do seu sentido, também a reta suporte que o contém. Os vetores deslizantes são conhecidos também como cursores. Notação: (u, r) - vetor deslizante (cursor) cujo suporte é a reta r . Exemplo: ver figura abaixo Vetor ligado - aquele que para ficar completamente caracterizado, devemos conhecer além da sua direção, módulo e sentido, também o ponto no qual está localizado a sua origem. Notação: (u, O) - vetor ligado ao ponto O. Exemplo: ver figura abaixo. Notas: a) o vetor ligado também é conhecido como vetor de posição. b) os vetores deslizantes e os vetores ligados, possuem muitas aplicações no estudo de Mecânica Racional ou Mecânica Geral, disciplinas vistas nos semestres iniciais dos cursos de Engenharia. c) neste trabalho, ao nos referirmos aos vetores, estaremos sempre considerando os vetores livres 1.1 - O VETOR OPOSTO Dado o vetor u , existe o vetor - u , que possui o mesmo módulo e mesma direção do vetor u , porém , de sentido oposto. 1.2 - O VETOR UNITÁRIO (VERSOR) Chamaremos de VERSOR ou VETOR UNITÁRIO , ao vetor cujo módulo seja igual à unidade, ou seja: | u | = u = 1. 1.3 - O VETOR NULO Vetor de módulo igual a zero, de direção e sentido indeterminados. Notação: 0 2 - A PROJEÇÃO DE UM VETOR SOBRE UM EIXO Veja a figura abaixo, na qual o vetor u forma um ângulo θ com o eixo r. Teremos que o vetor ux será a componente de u segundo o eixo r , de medida algébrica igual a ux = u . cosθ . Observe que se θ = 90º , teremos cosθ = 0 e, portanto, a projeção do vetor segundo o eixo r, será nula. 3 - A NOTAÇÃO DE GRASSMANN PARA OS VETORES Considere o vetor u na figura abaixo, sendo A a extremidade inicial e B a extremidade final do vetor. Grassmann (matemático alemão - 1809/1877) interpretou a situação, como o ponto B obtido do ponto A, através de uma translação de vetor u . Assim, pode-se escrever: B = A + u e, portanto, pode-se escrever também: u = B - A Esta interpretação, um vetor enxergado como uma diferença de dois pontos, permitirá a simplificação na resolução de questões, conforme veremos na seqüência deste trabalho. 4 - UM VETOR NO PLANO COMO UM PAR ORDENADO Considere o vetor u, representado no plano cartesiano Oxy, conforme figura abaixo: Sejam os vetores: u = (a,b) e v = (c, d) Já sabemos que: u.v = u.v.cosβ = ac + bd Logo, o ângulo formado pelos vetores, será tal que: Onde u e v correspondem aos módulos dos vetores e a, b, c, d são as suas coordenadas. Portanto, para determinar o ângulo formado por dois vetores, basta dividir o produto interno deles, pelo produto dos seus módulos. Achado o coseno, o ângulo estará determinado. Veremos um exercício de aplicação, no final deste arquivo. Vamos demonstrar o teorema de Pitágoras, utilizando o conceito de produto interno de vetores. Seja o triângulo retângulo da figura abaixo: É óbvio que: w = u + v Quadrando escalarmente a igualdade vetorial acima, vem: w2 = u2 + 2.u.v + v2 Dos itens (b) e (c) acima, concluímos que w2 = w2 , u2 = u2 , v2 = v2 e u.v = 0 (lembre-se que os vetores u e v são perpendiculares). Assim, substituindo, vem: w2 = u2 + 2.0 + v2 , ou, finalmente: w2 = u2 + v2 (o quadrado da hipotenusa é igual à soma dos quadrados dos catetos). Agora, convidamos ao visitante, a deduzir o teorema dos cosenos, ou seja : em todo triângulo, o quadrado de um lado é igual à soma dos quadrados dos outros dois lados, menos o dobro do produto desses lados pelo coseno do ângulo formado entre eles. Existe uma outra operação elementar definida no espaço R3 , denominada PRODUTO VETORIAL ou PRODUTO EXTERNO, que será objeto de discussão na próxima atualização desta página, prevista para a primeira semana de fevereiro. Para concluir, vamos resolver algumas questões envolvendo vetores. 1 - Dados os vetores no plano R2 , u = 2 i - 5 j e v = i + j , pede-se determinar: a) o vetor soma u + v b) o módulo do vetor u + v c) o vetor diferença u - v d) o vetor 3 u - 2 v e) o produto interno u.v f) o ângulo formado pelos vetores u e v SOLUÇÃO: a) Temos: u = (2, -5) e v = (1, 1). Logo, u + v = (2, -5) + (1, 1) = (3, -4) = 3 i - 4 j b) | u + v| = √ 32 + 42 = √ 25 = 5 ou 5 u.c (u.c. = unidades de comprimento). c) u - v = (2, -5) - (1, 1) = (1, -6) = i - 6 j d) 3u - 2v = 3.(2, -5) -2( 1, 1) = (6, -15) + (-2, -2) = (4, -17) = 4 i - 17 j e) u.v = 2.1 + (-5).1 = - 3 f) conforme visto acima, teremos que calcular os módulos de u e de v . Vem: u = √ 22+(-5)2 = √ 4+25 = √ 29 e v = √ 12+12 = √ 2 Logo, cosβ = (-3) / √ 29.√ 2 = (-3) / √ 58 = (-3/58).√ 58 ≅ - 0,3939 Então, o ângulo β será igual aproximadamente a 113,19738º , obtido numa calculadora científica. 2 - Dado o vetor no espaço R3, u = x.i + y.j + z.k , deduza a fórmula para o cálculo do módulo u , vista no item 5. DICA: determine o produto interno u.u , lembrando que os versores i, j, k são perpendiculares dois a dois e, portanto os produtos internos serão nulos. Como u.u = u2, teremos: u = √ u.u . No próximo capítulo, resolveremos mais questões e daremos continuidade ao assunto, apresentando PRODUTO VETORIAL. Paulo Marques - Feira de Santana - BA - 10/01/2000 Vetores II No texto a seguir,os vetores serão indicados através de letras em negrito e os seus módulos, através das mesmas letras sem o negrito. Exemplo: u indicará o módulo do vetor u. Considere dois vetores u e v pertencentes ao espaço R3. Define-se o Produto Vetorial u x v como sendo um terceiro vetor w, com as seguintes características: a) o módulo de w é w = |u x v| = u.v.senß, onde ß é o ângulo formado pelos vetores u e v. b) a direção de w é perpendicular ao plano dos vetores u e v. c) o sentido do vetor w = u x v é dado pela regra da mão esquerda: Dispondo-se os dedos médio e indicador da mão esquerda, apontando no mesmo sentido dos vetores u e v, o dedo polegar apontará o sentido do vetor w. Veja a figura a seguir: Notas importantes: 1 – o produto vetorial é também denominado produto externo. 2 – do item (c) da definição dada, conclui-se que uxv = -(vxu), ou seja, o produto vetorial é uma operação não comutativa. 3 – se ß = 0º, ou seja, os vetores u e v são paralelos, o módulo do vetor w = uxv será w = u.v.sen 0º = u.v.0 = 0 e, portanto, o vetor w = uxv será o vetor nulo. Observe então que o produto vetorial de dois vetores pode ser nulo, sem que pelo menos um dos vetores seja nulo; basta que eles sejam paralelos. 4 – se ß = 90º, ou seja, os vetores u e v são perpendiculares, o módulo do vetor w = uxv será w = u.v.sen90º = u.v.1 = u.v 5 – Lembrando dos vetores unitários(ou seja, de módulo igual a 1) do espaço R3, i,j e k, os quais são perpendiculares entre si dois a dois, e, baseados nas notas (3) e (4) acima, podemos escrever as seguintes igualdades relativas aos produtos vetoriais dos vetores unitários i, j e k: i x i = 0 i x j = k j x j = 0 j x k = i k x k = 0 k x i = j Para melhor entender a tabela acima, basta lembrar que vetores paralelos possuem produto vetorial nulo (todo vetor é paralelo a si próprio e portanto, i // i, j // j e k // k)e também lembrar que os vetores i, j, k são perpendiculares entre si dois a dois. 6 – Vimos em Trigonometria que a área de um triângulo pode ser calculada pelo semi-produto das medidas de dois dos seus lados,pelo seno do ângulo que eles formam, ou seja: A = 1/2 .a.b.sen ß, onde a e b são as medidas de dois lados e ß é o ângulo formado entre eles, e A é área. Nestas condições, considere o paralelogramo da figura abaixo: Então, o triângulo limitado
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved