Apostilas Discos Rigidos

Apostilas Discos Rigidos

(Parte 1 de 8)

ESTE MANUAL NÃO PODE SER VENDIDO Discos Rígidos

O Hard Disk, ou simplesmente Disco Rígido, é um sistema de armazenamento de alta capacidade, que por não ser volátil, é destinado ao armazenamento de arquivos e programas. Apesar de não parecer à primeira vista, o HD é um dos componentes que compõe um PC, que envolve mais tecnologia. Neste capítulo, vamos examinar o funcionamento dos discos rígidos, tanto a nível físico, quanto a nível lógico.

Sem dúvida, o disco rígido foi um dos componentes que mais evoluiu na história da computação. O primeiro disco rígido foi construído pela IBM em 1957, e era formado por um conjunto de nada menos que 50 discos de 24 polegadas de diâmetro, com uma capacidade total de 5 Megabytes, algo espantoso para a época. Comparado com os discos atuais, este pioneiro custava uma verdadeira fortuna: 35 mil dólares. Porém, apesar de inicialmente, extremamente caros, os discos rígidos foram tornando-se populares nos sistemas corporativos, pois forneciam um meio rápido de armazenamento de dados.

Este primeiro disco rígido, foi chamado de RAMAC 350 e, posteriormente apelidado de Winchester, termo muito usado ainda hoje para designar HDs de qualquer espécie.

Winchester era um modelo de espingarda de dois canos, na época muito popular nos EUA. Alguém então relacionou isso com o fato do RAMAC ser composto por vários discos, surgindo o apelido.

Com o passar do tempo, os discos foram crescendo em capacidade, diminuindo em tamanho, ganhando em confiabilidade e tornando-se mais baratos. Os primeiros discos rígidos usados em computadores pessoais, no início da década de 80, eram compostos por discos de 5.25 polegadas de diâmetro, possuíam capacidades entre 5 e 20 MB e custavam a partir de 1500 dólares, enquanto que hoje em dia, cerca de 20 anos depois, é possível encontrar discos de 13 GB ou mais, por menos de 150 dólares, mesmo aqui no Brasil.

Como funciona um Disco Rígido

Dentro do disco rígido, os dados são gravados em discos magnéticos, chamados em Inglês de platters. O nome “disco rígido” vem justamente do fato dos discos internos serem lâminas metálicas extremamente rígidas. Os platters são compostos de duas camadas.

A primeira é chamada de substrato, e nada mais é do que um disco metálico, geralmente feito de ligas de alumínio. Este disco é polido em salas limpas, para que se torne perfeitamente plano. A fim de permitir o armazenamento de dados, este disco é recoberto por uma segunda camada, agora de material magnético.

A aplicação da camada magnética é feita dos dois lados do disco, e pode ser feita de duas maneiras diferentes. A primeira chama-se eletroplating e é bem semelhante à eletrólise usada para banhar bijuterias à ouro. Esta técnica não permite uma superfície muito uniforme, e por isso, só é usada em HDs antigos, em geral os com menos de 500 MB. A técnica usada atualmente é muito mais precisa, chama-se sputtering e usa uma tecnologia semelhante à usada para soldar os transístores dos processadores.

Como a camada magnética tem apenas alguns mícrons de espessura, é recoberta por uma fina camada protetora, que oferece alguma proteção contra pequenos impactos. Esta camada é importante, pois apesar dos discos serem encapsulados em salas limpas, eles internamente contêm ar, com pressão semelhante à ambiente. Como veremos adiante, não seria possível um disco rígido funcionar caso internamente houvesse apenas vácuo.

Os HDs são hermeticamente fechados, a fim de impedir qualquer contaminação proveniente do meio externo, porém, nunca é possível manter um ambiente 100% livre de partículas de poeira. Um pequeno dano na camada protetora não interfere no processo de leitura/gravação, que é feito de forma magnética.

Os discos são montados em um eixo também feito de alumínio, que deve ser sólido o suficiente para evitar qualquer vibração dos discos, mesmo a altas rotações. Este é mais um componente que passa por um processo de polimento, já que os discos devem ficar perfeitamente presos e alinhados.

Finamente, temos o motor de rotação, responsável por manter uma rotação constante. O motor é um dos maiores responsáveis pela durabilidade do disco rígido, pois a maioria das falhas graves provêm justamente do motor.

Os HDs mais antigos utilizavam motores de 3,600 rotações por minuto, enquanto que atualmente, são utilizados motores de 5,600 ou 7,200 RPM, que podem chegar a mais de 10,0 RPM nos modelos mais caros. A velocidade de rotação é um dos principais fatores que determinam a performance. Para ler e gravar dados no disco, usamos cabeças de leitura eletromagnéticas (heads em Inglês) que são presas a um braço móvel (arm), o que permite seu acesso a todo o disco. O braço de leitura é uma peça triangular feita de alumínio ou ligas deste, pois precisa ser ao mesmo tempo leve e resistente. Um dispositivo especial, chamado de atuador, ou “actuator” em Inglês, coordena o movimento das cabeças de leitura.

Nos primeiros discos rígidos, eram usados antiquados motores de passo para movimentar os braços e cabeças de leitura. Porém, além de muito lentos, eles eram muito susceptíveis a problemas de desalinhamento, além de não serem muito confiáveis. Os discos contemporâneos (qualquer coisa acima de 40 MB) utilizam um mecanismo bem mais sofisticado para esta tarefa, justamente o actuator, composto por um dispositivo que atua através de atração e repulsão eletromagnética. Basicamente temos dois eletroímãs, um de cada lado do braço móvel. Alterando a intensidade da corrente elétrica e, consequentemente a potência de cada imã, o braço e consequentemente as cabeças de leitura se movimentem. Apesar de parecer suspeito, esse sistema é muito mais rápido, preciso e confiável que os motores de passo.

Outro dado interessante é a maneira como as cabeças de leitura lêem os dados, sem tocar na camada magnética. Se você tiver a oportunidade de ver um disco rígido aberto, verá que, com os discos parados, as cabeças de leitura são pressionadas levemente em direção ao disco, tocando-o com uma certa pressão. Porém, quando os discos giram à alta rotação, forma-se uma espécie de colchão de ar (pois os discos são fechados hermeticamente, mas não à vácuo, temos ar dentro deles). Este colchão de ar repele a cabeça de leitura, fazendo com que fique sempre a alguns mícrons de distância dos discos. É mais ou menos o mesmo princípio utilizado nos aviões.

Veja que enquanto o HD está desligado, as cabeças de leitura ficam numa posição de descanso, longe dos discos magnéticos. Elas só saem dessa posição quando os discos já estão girando à velocidade máxima. Para prevenir acidentes, as cabeças de leitura voltam à posição de descanso sempre que não estão sendo lidos dados, apensar dos discos continuarem girando.

É justamente por isso que às vezes ao sofrer um pico de tensão, ou o micro ser desligado enquanto o HD é acesso, surgem setores defeituosos. Ao ser cortada a energia, os discos param de girar e é desfeito o colchão de ar, fazendo com que as cabeças de leitura possam vir a tocar os discos magnéticos.

Para diminuir a ocorrência deste tipo de acidente, nos HDs modernos é instalado um pequeno imã em um dos lados do actuator, que se encarrega de atrair as cabeças de leitura à posição de descanso, toda vez que a eletricidade é cortada (tecnologia chamada de auto-parking). A camada de proteção dos discos magnéticos, também oferece alguma proteção contra impactos, mas mesmo assim, às vezes os danos ocorrem, resultando em um ou vários setores defeituosos. Por isso, é sempre bom desligar o micro apenas na tela “o seu computador já pode ser desligado com segurança” do Windows.

Apesar do preço, um no-break será uma excelente aquisição, não só por aumentar sua tranqüilidade enquanto está trabalhando (já que mesmo se a eletricidade acabar, você ainda terá tempo suficiente para salvar seu trabalho e desligar tranqüilamente o micro), mas por prevenir danos aos discos rígidos. Atualmente os modelos mais baratos custam menos de 200 reais, menos de 15% do valor total de um micro simples.

A placa controladora

Todo o funcionamento do disco rígido, a movimentação da cabeça de leitura, a velocidade de rotação, a leitura e gravação dos dados, o envio e recebimento de dados através da porta IDE, etc. é coordenado pela placa controladora. Nos HDs mais antigos, a placa controladora era uma placa separada, conectada a um slot ISA e ligada ao HD por dois cabos de dados. Este arranjo era muito ineficiente, pois a distância tornava a comunicação muito susceptível a interferências e corrupção de dados.

A partir do advento dos discos IDE, a placa controladora passou a fazer parte do próprio disco rígido. Nada mais lógico, pois a placa controladora precisa ser construída de acordo com a arquitetura física do disco, e jamais funcionaria em outro modelo, sendo assim, não existiria motivo para mante-los separados. Além da praticidade, este arranjo permite uma comunicação de dados muito mais eficiente, já que são usados cabos muitos mas curtos. É por isso que não dizemos “controladora IDE” e sim “interface IDE”, pois ela funciona apenas como um meio de comunicação, já que a controladora faz parte do próprio disco rígido.

Apesar de pequena, a placa controladora de um disco atual é muito mais sofisticada do que um micro antigo inteiro, (um 286 por exemplo), possuem mais poder de processamento e até mesmo mais memória, na forma do cache ou buffer, por sinal um dos grandes responsáveis pelo desempenho dos HDs atualmente. Os HDs atuais podem trazer até 2 MB de cache, que armazena os dados acessados, diminuindo bastante o número de leituras. Dados armazenado no cache podem ser transferidos quase que instantaneamente, usando toda a velocidade permitida pela interface IDE, enquanto um acesso a dados gravados nos discos magnéticos demoraria muito mais tempo.

Diâmetro dos discos

O tamanho dos discos magnéticos determina o tamanho físico do disco rígido. Atualmente são utilizados discos de 3.5 polegadas de diâmetro, mas também é possível encontrar alguns modelos mais antigos de 5.25 polegadas (quase do tamanho de um drive de CD-ROM), como os modelos Quantum Bigfoot, muito vendidos até pouco tempo atrás.

Estes discos maiores, porém, não são uma boa opção, pois são bem mais lentos e mais passíveis de problemas que seus irmãos menores. Isso se deve à vários fatores: sendo os platters maiores, não se consegue fazê-los girar a uma velocidade muito alta, ocasionando lentidão no acesso aos dados gravados. Devido à superfície dos discos ser muito maior, as cabeças de leitura demoram muito mais tempo para conseguir localizar os dados, justamente devido à maior distância a ser percorrida.

Devido ao maior esforço, o mecanismo de rotação também é mais passível de defeitos e os discos magnéticos são mais vulneráveis a impactos e vibrações. Finalmente, por serem maiores, os discos acabam tornando-se mais caros de se produzir .

Existem também discos de 2.5 polegadas, destinados a notebooks, devido ao seu tamanho reduzido e baixo consumo de energia. Existem também, discos miniaturizados, destinados à aparelhos menores, como handhelds, palmtops, câmeras digitais, coletores de dados etc. que chegam a ser menores que uma moeda de 1 real.

Materiais utilizados

Existem pesquisas para desenvolver materiais mais baratos que as ligas de alumínio usadas atualmente, mas ao mesmo tempo rígidos o suficiente para substitui-las, o que poderia baratear substancialmente os discos rígidos. Ha muito os grandes fabricantes vêm fazendo pesquisas, a maioria com compostos de vidro ou plástico. A IBM foi a pioneira com os discos de vidro, com seu Deskstar 75GXP. A tecnologia desenvolvida pela IBM oferece até mesmo, algumas vantagens sobre os discos de alumínio tradicionais, já que o vidro é uma material mais duro, e justamente por isso, os discos são mais estáveis à altas rotações. Porém, os discos da IBM ainda são mais caros que modelos equivalentes com discos de alumínio. A Samsung vem trabalhando atualmente em discos de compostos plásticos, visando produzir discos de baixo custo. Porém, ao contrário do vidro, o plástico é um material muito pouco resistente, e os discos muito mais susceptíveis a deformações a altas temperaturas e altas rotações. É de se esperar que se chegarem a ser lançados, os discos de plástico sejam bem mais baratos que os de alumínio ou vidro, mas ao mesmo tempo, mais lentos e menos duráveis.

Trilhas, Setores e Cilindros

Para organizar o processo de gravação e leitura dos dados gravados no disco rígido, a superfície dos discos é dividida em trilhas e setores. As trilhas são círculos concêntricos, que começam no final do disco e vão se tornando menores conforme se aproximam do centro. Cada trilha recebe um número de endereçamento, que permite sua localização. A trilha mais externa recebe o número 0 e as seguintes recebem os números 1, 2, 3, e assim por diante. Para facilitar ainda mais o acesso aos dados, as trilhas se dividem em setores, que são pequenos trechos onde são armazenados os dados, sendo que cada setor guarda 512 bytes de informações. Um disco rígido atual possui até 900 setores em cada trilha (o número varia de acordo com a marca e modelo), possuindo sempre mais de 3000 trilhas.

Para definir o limite entre uma trilha e outra, assim como, onde termina um setor e onde começa o próximo, são usadas marcas de endereçamento, pequenas áreas com um sinal magnético especial, que orientam a cabeça de leitura, permitindo à controladora do disco localizar os dados desejados. Em HDs IDE estas marcas são feitas apenas uma vez, durante a fabricação do disco, e não podem ser apagadas via software. Existem alguns programas como o Norton Calibrate, que prometem uma formatação física não destrutiva, regravando as marcas de orientação o que, segundo os manuais, melhoraria a confiabilidade do disco. Entretanto, a grande maioria dos discos atuais não permite este tipo de regravação, também por que ela não é necessária. Ao rodar estes programas, apesar de ser mostrado um indicador de progresso, não será feito absolutamente nada.

Além das trilhas e setores, temos também as faces de disco. Um HD é formado internamente por vários discos empilhados, sendo o mais comum o uso de 2 ou 3 discos. Em geral, apenas HDs de grande capacidade utilizam 4 ou mais discos. Assim como num disquete, podemos usar os dois lados do disco para gravar dados, cada lado passa então a ser chamado de face. Em um disco rígido com 2 discos por exemplo, temos 4 faces. Como uma face é isolada da outra, temos num disco rígido várias cabeças de leitura, uma para cada face.

Apesar de possuirmos várias cabeças de leitura num disco rígido, elas não se movimentam independentemente, pois são todas presas à mesma peça metálica, chamada braço de leitura. O braço de leitura é uma peça triangular, que pode se mover horizontalmente. Para acessar um dado contido na trilha 982 da face de disco 3, por exemplo, a controladora do disco ativa a cabeça de leitura responsável pelo disco 3 e a seguir, ordena ao braço de leitura que se dirija à trilha correspondente. Não é possível que uma cabeça de leitura esteja na trilha 982, ao mesmo tempo que outra esteja na trilha 5631, por exemplo, justamente por seus movimentos não serem independentes.

(Parte 1 de 8)

Comentários